Description
A key challenge to determine the role of microstructure on the properties of materials is to identify the structures and distinguish their individual behaviour. Grain boundaries are common structural features in oxide energy materials and many are coincidence site lattice (CSL) grain boundaries, where there is a relatively well-ordered grain boundary plane. For example, the space charge effect is common in grain boundaries of fluorite structured materials, which ultimately hinders ionic conductivity through the boundary. Cerium dioxide, CeO2, is an important electrolyte in solid oxide fuel cells and a catalyst in catalytic homogeneous and heterogeneous systems and as such the effect of grain boundaries on its properties has drawn great interest. Using atomistic simulations based on classical energy minimization, we investigated a large range of grain boundary structures in CeO2 arising from mirroring surfaces with Miller indices {hkl} where h, k, and l = 0-9. We have mapped the minima and maxima of the potential energy surface of the resulting 161 symmetry independent grain boundaries arising from the mirroring of the surfaces. We demonstrate that our search for grain boundary structures yields quantitative comparison with known experimental CSL structures. We have calculated the formation and cleavage energies for the lowest energies grain boundary configurations and identified trends between these quantities and the so-called sigma value specific to each structure.Period | 5 Apr 2021 → 1 May 2021 |
---|---|
Event title | ACS Spring Meeting 2021 |
Event type | Conference |
Location | OnlineShow on map |
Degree of Recognition | International |