3D Reconstruction of High Reflective Welding Surface Based on Binocular Structured Light Stereo Vision

Baizhen Li, Zhijie Xu, Feng Gao, Yanlong Cao, Quancheng Dong

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The inspection of welding surface quality is an important task for welding work. With the development of product quality inspection technology, automated and machine vision-based inspection have been applied to more industrial application fields because of its non-contact, con-venience, and high efficiency. However, challenging material and optical phenomena such as high reflective surface areas often present on welding seams tend to produce artifacts such as holes in the reconstructed model using current visual sensors, hence leading to insufficiency or even errors in the inspection result. This paper presents a 3D reconstruction technique for highly reflective welding surfaces based on binocular style structured light stereo vision. The method starts from capturing a fully lit image for identifying highly reflective regions on a welding surface using conventional com-puter vision models, including gray-scale, binarization, dilation, and erosion. Then, fringe projection profilometry is used to generate point clouds on the interested area. The mapping and alignment from 2D image to 3D point cloud is then established to highlight features that are vital for eliminating “holes”—large featureless areas—caused by high reflections such as the specular mirroring effect. A two-way slicing method is proposed to operate on the refined point cloud, following the concept of dimensionality reduction to project the sliced point cloud onto different image planes before a Smoothing Spline model is applied to fit the discrete point formed by projection. The 3D coordinate values of points in the “hole” region are estimated according to the fitted curves and appended to the original point cloud using iterative algorithms. Experiment results verify that the proposed method can accurately reconstruct a wide range of welding surfaces with significantly improved precision.

Original languageEnglish
Article number159
Number of pages15
JournalMachines
Volume10
Issue number2
Early online date20 Feb 2022
DOIs
Publication statusPublished - 20 Feb 2022

Fingerprint

Dive into the research topics of '3D Reconstruction of High Reflective Welding Surface Based on Binocular Structured Light Stereo Vision'. Together they form a unique fingerprint.

Cite this