Abstract
Purpose
Regenerative shock absorber systems have become more attractive to researchers and industries in the past decade. Vibration occurs between the road surface and car body when driving on irregular road surfaces. The function of regenerative shock absorbers is to recover this vibration energy, which can be dissipated in the form of heat as waste. In this paper, the development of regenerative shock absorber is reviewed.
Methods
This paper first introduces the existing research and significance of regenerative shock absorbers and reviews the potential of automotive vibration energy recovery techniques; then, it classifies and summarises the general classifications of regenerative shock absorbers. Finally, this study analyses the modelling and simulation of shock absorbers, actuators and dampers.
Results and Conclusions
Results show a great potential of energy recovery from automobile suspension vibration. And, the hydraulic and electrical regenerative structures exhibit excellent performance, with great potential for development. Regenerative shock absorbers have become a promising trend for vehicles because of the increasingly prominent energy issues.
Regenerative shock absorber systems have become more attractive to researchers and industries in the past decade. Vibration occurs between the road surface and car body when driving on irregular road surfaces. The function of regenerative shock absorbers is to recover this vibration energy, which can be dissipated in the form of heat as waste. In this paper, the development of regenerative shock absorber is reviewed.
Methods
This paper first introduces the existing research and significance of regenerative shock absorbers and reviews the potential of automotive vibration energy recovery techniques; then, it classifies and summarises the general classifications of regenerative shock absorbers. Finally, this study analyses the modelling and simulation of shock absorbers, actuators and dampers.
Results and Conclusions
Results show a great potential of energy recovery from automobile suspension vibration. And, the hydraulic and electrical regenerative structures exhibit excellent performance, with great potential for development. Regenerative shock absorbers have become a promising trend for vehicles because of the increasingly prominent energy issues.
Original language | English |
---|---|
Pages (from-to) | 225-246 |
Number of pages | 22 |
Journal | Journal of Vibration Engineering & Technologies |
Volume | 8 |
Issue number | 1 |
Early online date | 3 Apr 2019 |
DOIs | |
Publication status | Published - 1 Feb 2020 |