A nonlinear time-series analysis approach to identify thresholds in associations between population antibiotic use and rates of resistance

José María López-Lozano, Timothy Lawes, César Nebot, Arielle Beyaert, Xavier Bertrand, Didier Hocquet, Mamoon Aldeyab, Michael Scott, Geraldine Conlon-Bingham, David Farren, Gábor Kardos, Adina Fésűs, Jesús Rodríguez-Baño, Pilar Retamar, Nieves Gonzalo-Jiménez, Ian M. Gould, José María López-Lozano, Timothy Lawes, César Nebot, Arielle Beyaert & 23 others Xavier Bertrand, Didier Hocquet, Michelle Thouverez, Mamoon Aldeyab, Michael Scott, Geraldine Conlon-Bingham, David Farren, Gábor Kardos, Hajnalka Tóth, Adina Fésus, Jesús Rodríguez-Baño, Pilar Retamar, Nieves Gonzalo-Jiménez, Ian M. Gould, María Núñez-Núñez, Ana I. Suárez, María Navarro-Cots, Emilio Borrajo, Carlos Devesa, Joan Gregori, Inmaculada García-Cuello, Isabel Pacheco, María Cerón

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Balancing access to antibiotics with the control of antibiotic resistance is a global public health priority. At present, antibiotic stewardship is informed by a ‘use it and lose it’ principle, in which antibiotic use by the population is linearly related to resistance rates. However, theoretical and mathematical models suggest that use–resistance relationships are nonlinear. One explanation for this is that resistance genes are commonly associated with ‘fitness costs’ that impair the replication or transmissibility of the pathogen. Therefore, resistant genes and pathogens may only gain a survival advantage where antibiotic selection pressures exceed critical thresholds. These thresholds may provide quantitative targets for stewardship—optimizing the control of resistance while avoiding over-restriction of antibiotics. Here, we evaluated the generalizability of a nonlinear time-series analysis approach for identifying thresholds using historical prescribing and microbiological data from five populations in Europe. We identified minimum thresholds in temporal relationships between the use of selected antibiotics and incidence rates of carbapenem-resistant Acinetobacter baumannii (Hungary), extended-spectrum β-lactamase-producing Escherichia coli (Spain), cefepime-resistant E. coli (Spain), gentamicin-resistant Pseudomonas aeruginosa (France) and methicillin-resistant Staphylococcus aureus (Northern Ireland) in different epidemiological phases. Using routinely generated data, our approach can identify context-specific quantitative targets for rationalizing population antibiotic use and controlling resistance. Prospective intervention studies that restrict antibiotic consumption are needed to validate these thresholds.

LanguageEnglish
Pages1160-1172
Number of pages13
JournalNature Microbiology
Volume4
Issue number7
Early online date8 Apr 2019
DOIs
Publication statusPublished - 1 Jul 2019
Externally publishedYes

Fingerprint

Anti-Bacterial Agents
Population
Spain
Theoretical Models
Escherichia coli
Health Priorities
Acinetobacter baumannii
Northern Ireland
Carbapenems
Hungary
Health Services Needs and Demand
beta-Lactamases
Methicillin-Resistant Staphylococcus aureus
Microbial Drug Resistance
Gentamicins
Pseudomonas aeruginosa
Genes
France
Public Health
Prospective Studies

Cite this

López-Lozano, José María ; Lawes, Timothy ; Nebot, César ; Beyaert, Arielle ; Bertrand, Xavier ; Hocquet, Didier ; Aldeyab, Mamoon ; Scott, Michael ; Conlon-Bingham, Geraldine ; Farren, David ; Kardos, Gábor ; Fésűs, Adina ; Rodríguez-Baño, Jesús ; Retamar, Pilar ; Gonzalo-Jiménez, Nieves ; Gould, Ian M. ; López-Lozano, José María ; Lawes, Timothy ; Nebot, César ; Beyaert, Arielle ; Bertrand, Xavier ; Hocquet, Didier ; Thouverez, Michelle ; Aldeyab, Mamoon ; Scott, Michael ; Conlon-Bingham, Geraldine ; Farren, David ; Kardos, Gábor ; Tóth, Hajnalka ; Fésus, Adina ; Rodríguez-Baño, Jesús ; Retamar, Pilar ; Gonzalo-Jiménez, Nieves ; Gould, Ian M. ; Núñez-Núñez, María ; Suárez, Ana I. ; Navarro-Cots, María ; Borrajo, Emilio ; Devesa, Carlos ; Gregori, Joan ; García-Cuello, Inmaculada ; Pacheco, Isabel ; Cerón, María. / A nonlinear time-series analysis approach to identify thresholds in associations between population antibiotic use and rates of resistance. In: Nature Microbiology. 2019 ; Vol. 4, No. 7. pp. 1160-1172.
@article{7f43c930e2dc47debd2ae59d582b1507,
title = "A nonlinear time-series analysis approach to identify thresholds in associations between population antibiotic use and rates of resistance",
abstract = "Balancing access to antibiotics with the control of antibiotic resistance is a global public health priority. At present, antibiotic stewardship is informed by a ‘use it and lose it’ principle, in which antibiotic use by the population is linearly related to resistance rates. However, theoretical and mathematical models suggest that use–resistance relationships are nonlinear. One explanation for this is that resistance genes are commonly associated with ‘fitness costs’ that impair the replication or transmissibility of the pathogen. Therefore, resistant genes and pathogens may only gain a survival advantage where antibiotic selection pressures exceed critical thresholds. These thresholds may provide quantitative targets for stewardship—optimizing the control of resistance while avoiding over-restriction of antibiotics. Here, we evaluated the generalizability of a nonlinear time-series analysis approach for identifying thresholds using historical prescribing and microbiological data from five populations in Europe. We identified minimum thresholds in temporal relationships between the use of selected antibiotics and incidence rates of carbapenem-resistant Acinetobacter baumannii (Hungary), extended-spectrum β-lactamase-producing Escherichia coli (Spain), cefepime-resistant E. coli (Spain), gentamicin-resistant Pseudomonas aeruginosa (France) and methicillin-resistant Staphylococcus aureus (Northern Ireland) in different epidemiological phases. Using routinely generated data, our approach can identify context-specific quantitative targets for rationalizing population antibiotic use and controlling resistance. Prospective intervention studies that restrict antibiotic consumption are needed to validate these thresholds.",
author = "L{\'o}pez-Lozano, {Jos{\'e} Mar{\'i}a} and Timothy Lawes and C{\'e}sar Nebot and Arielle Beyaert and Xavier Bertrand and Didier Hocquet and Mamoon Aldeyab and Michael Scott and Geraldine Conlon-Bingham and David Farren and G{\'a}bor Kardos and Adina F{\'e}sűs and Jes{\'u}s Rodr{\'i}guez-Ba{\~n}o and Pilar Retamar and Nieves Gonzalo-Jim{\'e}nez and Gould, {Ian M.} and L{\'o}pez-Lozano, {Jos{\'e} Mar{\'i}a} and Timothy Lawes and C{\'e}sar Nebot and Arielle Beyaert and Xavier Bertrand and Didier Hocquet and Michelle Thouverez and Mamoon Aldeyab and Michael Scott and Geraldine Conlon-Bingham and David Farren and G{\'a}bor Kardos and Hajnalka T{\'o}th and Adina F{\'e}sus and Jes{\'u}s Rodr{\'i}guez-Ba{\~n}o and Pilar Retamar and Nieves Gonzalo-Jim{\'e}nez and Gould, {Ian M.} and Mar{\'i}a N{\'u}{\~n}ez-N{\'u}{\~n}ez and Su{\'a}rez, {Ana I.} and Mar{\'i}a Navarro-Cots and Emilio Borrajo and Carlos Devesa and Joan Gregori and Inmaculada Garc{\'i}a-Cuello and Isabel Pacheco and Mar{\'i}a Cer{\'o}n",
year = "2019",
month = "7",
day = "1",
doi = "10.1038/s41564-019-0410-0",
language = "English",
volume = "4",
pages = "1160--1172",
journal = "Nature Microbiology",
issn = "2058-5276",
publisher = "Nature Publishing Group",
number = "7",

}

López-Lozano, JM, Lawes, T, Nebot, C, Beyaert, A, Bertrand, X, Hocquet, D, Aldeyab, M, Scott, M, Conlon-Bingham, G, Farren, D, Kardos, G, Fésűs, A, Rodríguez-Baño, J, Retamar, P, Gonzalo-Jiménez, N, Gould, IM, López-Lozano, JM, Lawes, T, Nebot, C, Beyaert, A, Bertrand, X, Hocquet, D, Thouverez, M, Aldeyab, M, Scott, M, Conlon-Bingham, G, Farren, D, Kardos, G, Tóth, H, Fésus, A, Rodríguez-Baño, J, Retamar, P, Gonzalo-Jiménez, N, Gould, IM, Núñez-Núñez, M, Suárez, AI, Navarro-Cots, M, Borrajo, E, Devesa, C, Gregori, J, García-Cuello, I, Pacheco, I & Cerón, M 2019, 'A nonlinear time-series analysis approach to identify thresholds in associations between population antibiotic use and rates of resistance', Nature Microbiology, vol. 4, no. 7, pp. 1160-1172. https://doi.org/10.1038/s41564-019-0410-0

A nonlinear time-series analysis approach to identify thresholds in associations between population antibiotic use and rates of resistance. / López-Lozano, José María; Lawes, Timothy; Nebot, César; Beyaert, Arielle; Bertrand, Xavier; Hocquet, Didier; Aldeyab, Mamoon; Scott, Michael; Conlon-Bingham, Geraldine; Farren, David; Kardos, Gábor; Fésűs, Adina; Rodríguez-Baño, Jesús; Retamar, Pilar; Gonzalo-Jiménez, Nieves; Gould, Ian M.; López-Lozano, José María; Lawes, Timothy; Nebot, César; Beyaert, Arielle; Bertrand, Xavier; Hocquet, Didier; Thouverez, Michelle; Aldeyab, Mamoon; Scott, Michael; Conlon-Bingham, Geraldine; Farren, David; Kardos, Gábor; Tóth, Hajnalka; Fésus, Adina; Rodríguez-Baño, Jesús; Retamar, Pilar; Gonzalo-Jiménez, Nieves; Gould, Ian M.; Núñez-Núñez, María; Suárez, Ana I.; Navarro-Cots, María; Borrajo, Emilio; Devesa, Carlos; Gregori, Joan; García-Cuello, Inmaculada; Pacheco, Isabel; Cerón, María.

In: Nature Microbiology, Vol. 4, No. 7, 01.07.2019, p. 1160-1172.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A nonlinear time-series analysis approach to identify thresholds in associations between population antibiotic use and rates of resistance

AU - López-Lozano, José María

AU - Lawes, Timothy

AU - Nebot, César

AU - Beyaert, Arielle

AU - Bertrand, Xavier

AU - Hocquet, Didier

AU - Aldeyab, Mamoon

AU - Scott, Michael

AU - Conlon-Bingham, Geraldine

AU - Farren, David

AU - Kardos, Gábor

AU - Fésűs, Adina

AU - Rodríguez-Baño, Jesús

AU - Retamar, Pilar

AU - Gonzalo-Jiménez, Nieves

AU - Gould, Ian M.

AU - López-Lozano, José María

AU - Lawes, Timothy

AU - Nebot, César

AU - Beyaert, Arielle

AU - Bertrand, Xavier

AU - Hocquet, Didier

AU - Thouverez, Michelle

AU - Aldeyab, Mamoon

AU - Scott, Michael

AU - Conlon-Bingham, Geraldine

AU - Farren, David

AU - Kardos, Gábor

AU - Tóth, Hajnalka

AU - Fésus, Adina

AU - Rodríguez-Baño, Jesús

AU - Retamar, Pilar

AU - Gonzalo-Jiménez, Nieves

AU - Gould, Ian M.

AU - Núñez-Núñez, María

AU - Suárez, Ana I.

AU - Navarro-Cots, María

AU - Borrajo, Emilio

AU - Devesa, Carlos

AU - Gregori, Joan

AU - García-Cuello, Inmaculada

AU - Pacheco, Isabel

AU - Cerón, María

PY - 2019/7/1

Y1 - 2019/7/1

N2 - Balancing access to antibiotics with the control of antibiotic resistance is a global public health priority. At present, antibiotic stewardship is informed by a ‘use it and lose it’ principle, in which antibiotic use by the population is linearly related to resistance rates. However, theoretical and mathematical models suggest that use–resistance relationships are nonlinear. One explanation for this is that resistance genes are commonly associated with ‘fitness costs’ that impair the replication or transmissibility of the pathogen. Therefore, resistant genes and pathogens may only gain a survival advantage where antibiotic selection pressures exceed critical thresholds. These thresholds may provide quantitative targets for stewardship—optimizing the control of resistance while avoiding over-restriction of antibiotics. Here, we evaluated the generalizability of a nonlinear time-series analysis approach for identifying thresholds using historical prescribing and microbiological data from five populations in Europe. We identified minimum thresholds in temporal relationships between the use of selected antibiotics and incidence rates of carbapenem-resistant Acinetobacter baumannii (Hungary), extended-spectrum β-lactamase-producing Escherichia coli (Spain), cefepime-resistant E. coli (Spain), gentamicin-resistant Pseudomonas aeruginosa (France) and methicillin-resistant Staphylococcus aureus (Northern Ireland) in different epidemiological phases. Using routinely generated data, our approach can identify context-specific quantitative targets for rationalizing population antibiotic use and controlling resistance. Prospective intervention studies that restrict antibiotic consumption are needed to validate these thresholds.

AB - Balancing access to antibiotics with the control of antibiotic resistance is a global public health priority. At present, antibiotic stewardship is informed by a ‘use it and lose it’ principle, in which antibiotic use by the population is linearly related to resistance rates. However, theoretical and mathematical models suggest that use–resistance relationships are nonlinear. One explanation for this is that resistance genes are commonly associated with ‘fitness costs’ that impair the replication or transmissibility of the pathogen. Therefore, resistant genes and pathogens may only gain a survival advantage where antibiotic selection pressures exceed critical thresholds. These thresholds may provide quantitative targets for stewardship—optimizing the control of resistance while avoiding over-restriction of antibiotics. Here, we evaluated the generalizability of a nonlinear time-series analysis approach for identifying thresholds using historical prescribing and microbiological data from five populations in Europe. We identified minimum thresholds in temporal relationships between the use of selected antibiotics and incidence rates of carbapenem-resistant Acinetobacter baumannii (Hungary), extended-spectrum β-lactamase-producing Escherichia coli (Spain), cefepime-resistant E. coli (Spain), gentamicin-resistant Pseudomonas aeruginosa (France) and methicillin-resistant Staphylococcus aureus (Northern Ireland) in different epidemiological phases. Using routinely generated data, our approach can identify context-specific quantitative targets for rationalizing population antibiotic use and controlling resistance. Prospective intervention studies that restrict antibiotic consumption are needed to validate these thresholds.

UR - http://www.scopus.com/inward/record.url?scp=85064083143&partnerID=8YFLogxK

U2 - 10.1038/s41564-019-0410-0

DO - 10.1038/s41564-019-0410-0

M3 - Article

VL - 4

SP - 1160

EP - 1172

JO - Nature Microbiology

T2 - Nature Microbiology

JF - Nature Microbiology

SN - 2058-5276

IS - 7

ER -