A novel integrative multimodal classifier to enhance the diagnosis of Parkinson's disease

Xiaoyan Zhou, Luca Parisi, Wentao Huang, Yihan Zhang, Xiaoqun Huang, Mansour Youseffi, Farideh Javid, Renfei Ma

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Parkinson’s disease (PD) is a complex, progressive neurodegenerative disorder with high heterogeneity, making early diagnosis difficult. Early detection and intervention are crucial for slowing PD progression. Understanding PD’s diverse pathways and mechanisms is key to advancing knowledge. Recent advances in noninvasive imaging and multi-omics technologies have provided valuable insights into PD’s underlying causes and biological processes. However, integrating these diverse data sources remains challenging, especially when deriving meaningful low-level features that can serve as diagnostic indicators. This study developed and validated a novel integrative, multimodal predictive model for detecting PD based on features derived from multimodal data, including hematological information, proteomics, RNA sequencing, metabolomics, and dopamine transporter scan imaging, sourced from the Parkinson’s Progression Markers Initiative. Several model architectures were investigated and evaluated, including support vector machine, eXtreme Gradient Boosting, fully connected neural networks with concatenation and joint modeling (FCNN_C and FCNN_JM), and a multimodal encoder-based model with multi-head cross-attention (MMT_CA). The MMT_CA model demonstrated superior predictive performance, achieving a balanced classification accuracy of 97.7%, thus highlighting its ability to capture and leverage cross-modality inter-dependencies to aid predictive analytics. Furthermore, feature importance analysis using SHapley Additive exPlanations not only identified crucial diagnostic biomarkers to inform the predictive models in this study but also holds potential for future research aimed at integrated functional analyses of PD from a multi-omics perspective, ultimately revealing targets required for precision medicine approaches to aid treatment of PD aimed at slowing down its progression.

Original languageEnglish
Article numberbbaf088
Number of pages11
JournalBriefings in Bioinformatics
Volume26
Issue number2
DOIs
Publication statusPublished - 1 Mar 2025

Cite this