@article{ad05b5e09a72411a80eeaa34b1ef3ea5,
title = "A Proteomic Screen for Nucleolar SUMO Targets Shows SUMOylation Modulates the Function of Nop5/Nop58",
abstract = "Posttranslational SUMO modification is an important mechanism of regulating protein function, especially in the cell nucleus. The nucleolus is the subnuclear organelle responsible for rRNA synthesis, processing, and assembly of the large and small ribosome subunits. Here, we have used SILAC-based quantitative proteomics to identify nucleolar SUMOylated proteins. This reveals a role for SUMOylation in the biogenesis and/or function of small nucleolar ribonucleoprotein complexes (snoRNPs) via the targeting of Nhp2 and Nop58. Using combined in vitro and in vivo approaches, both Nhp2 and Nop58 (also known as Nop5) are shown to be substrates for SUMOylation. Mutational analyses revealed the sites of modification on Nhp2 as K5, and on Nop58 as K467 and K497. Unlike Nop58 and Nhp2, the closely related Nop56 and 15.5K proteins appear not to be SUMO targets. SUMOylation is essential for high-affinity Nop58 binding to snoRNAs. This study provides direct evidence linking SUMO modification with snoRNP function.",
keywords = "Proteins, RNA",
author = "Westman, {Belinda J.} and C{\'e}line Verheggen and Saskia Hutten and Lam, {Yun Wah} and Edouard Bertrand and Lamond, {Angus I.}",
note = "Funding Information: From the University of Dundee we thank R. Hay, M. Tatham, E. Jaffray, S. Boulon, Y. Ahmad, and F. Fuller-Pace (advice and reagents); R. Clarke (flow cytometry); D. Lamont and K. Beattie (Fingerprints Proteomics Facility); and S. Swift and P. Schofield (microscopy and image analysis). For reagents, we thank N. Watkins (University of Newcastle; anti-Nop56), S. Mueller (Max Planck Institute of Biochemistry; anti-SENP3), M. Dasso (National Institute of Child Health and Human Development; anti-SENP3 and -5), and E. Yeh (University of Texas MD Anderson Cancer Center; anti-SENP5). We thank A. Vertegaal and I. Matic for sharing unpublished data. This work was supported by grants from the Wellcome Trust (083524/Z/07/Z) and MRC (69159) to A.I.L. and by funding from the UK RASOR network and by the EU networks EURASNET (LSHG-CT-2005-518238) and PROSPECTS (HEALTH-F4-2008-201648). C.V. and E.B. are funded by La Ligue Fran{\c c}aise contre le cancer. A.I.L. is a Wellcome Trust Principal Research Fellow. B.J.W is a Marie-Curie International Incoming Fellow (PIIF-GA-2008-219452). S.H. is a Leopoldina Research Fellow (BMBF-LPD 9901/8-177). ",
year = "2010",
month = aug,
day = "27",
doi = "10.1016/j.molcel.2010.07.025",
language = "English",
volume = "39",
pages = "618--631",
journal = "Molecular Cell",
issn = "1097-2765",
publisher = "Cell Press",
number = "4",
}