TY - JOUR
T1 - A Review of the Use of Titanium for Reinforcement of Masonry Structures
AU - Haile, Fitsum
AU - Adkins, Jill
AU - Corradi, Marco
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/7/1
Y1 - 2022/7/1
N2 - Titanium has exceptional durability, very high specific strength, a thermal expansion coefficient similar to construction materials, low weight density, and its cost has drastically decreased over the last decades. One of the main requirements in conservation engineering is the durability of the retrofit materials and the reversibility of interventions, and a possible interesting solution is the use of titanium alloys coupled with inorganic matrices made of low-cement or lime mortars. Titanium has recently been used to reinforce important masonry and archeological monuments, but little is known about this. Its use is increasing in conservation engineering without adequate knowledge of its characteristics, grades, and properties. This paper summarizes the main features of titanium alloys, its recent applications, and discusses its drawbacks and advantages compared to other retrofit materials and methods. It is demonstrated that titanium alloys can be effectively used in many applications to reinforce masonry structures while complying with requirements in terms of durability, compatibility, and reversibility. Given its mechanical properties, its use in the repair and reinforcement of masonry structures could be particularly interesting in seismically prone areas.
AB - Titanium has exceptional durability, very high specific strength, a thermal expansion coefficient similar to construction materials, low weight density, and its cost has drastically decreased over the last decades. One of the main requirements in conservation engineering is the durability of the retrofit materials and the reversibility of interventions, and a possible interesting solution is the use of titanium alloys coupled with inorganic matrices made of low-cement or lime mortars. Titanium has recently been used to reinforce important masonry and archeological monuments, but little is known about this. Its use is increasing in conservation engineering without adequate knowledge of its characteristics, grades, and properties. This paper summarizes the main features of titanium alloys, its recent applications, and discusses its drawbacks and advantages compared to other retrofit materials and methods. It is demonstrated that titanium alloys can be effectively used in many applications to reinforce masonry structures while complying with requirements in terms of durability, compatibility, and reversibility. Given its mechanical properties, its use in the repair and reinforcement of masonry structures could be particularly interesting in seismically prone areas.
KW - earthquake engineering
KW - masonry structures
KW - retrofit solutions
KW - titanium alloys
UR - http://www.scopus.com/inward/record.url?scp=85133470642&partnerID=8YFLogxK
U2 - 10.3390/ma15134561
DO - 10.3390/ma15134561
M3 - Review article
AN - SCOPUS:85133470642
VL - 15
JO - Materials
JF - Materials
SN - 1996-1944
IS - 13
M1 - 4561
ER -