A robust optimization approach for imprecise data envelopment analysis

Amir H. Shokouhi, Adel Hatami-Marbini, Madjid Tavana, Saber Saati

Research output: Contribution to journalArticlepeer-review

99 Citations (Scopus)

Abstract

Crisp input and output data are fundamentally indispensable in traditional data envelopment analysis (DEA). However, the input and output data in real-world problems are often imprecise or ambiguous. Some researchers have proposed interval DEA (IDEA) and fuzzy DEA (FDEA) to deal with imprecise and ambiguous data in DEA. Nevertheless, many real-life problems use linguistic data that cannot be used as interval data and a large number of input variables in fuzzy logic could result in a significant number of rules that are needed to specify a dynamic model. In this paper, we propose an adaptation of the standard DEA under conditions of uncertainty. The proposed approach is based on a robust optimization model in which the input and output parameters are constrained to be within an uncertainty set with additional constraints based on the worst case solution with respect to the uncertainty set. Our robust DEA (RDEA) model seeks to maximize efficiency (similar to standard DEA) but under the assumption of a worst case efficiency defied by the uncertainty set and it's supporting constraint. A Monte-Carlo simulation is used to compute the conformity of the rankings in the RDEA model. The contribution of this paper is fourfold: (1) we consider ambiguous, uncertain and imprecise input and output data in DEA; (2) we address the gap in the imprecise DEA literature for problems not suitable or difficult to model with interval or fuzzy representations; (3) we propose a robust optimization model in which the input and output parameters are constrained to be within an uncertainty set with additional constraints based on the worst case solution with respect to the uncertainty set; and (4) we use Monte-Carlo simulation to specify a range of Gamma in which the rankings of the DMUs occur with high probability.

Original languageEnglish
Pages (from-to)387-397
Number of pages11
JournalComputers and Industrial Engineering
Volume59
Issue number3
Early online date19 May 2010
DOIs
Publication statusPublished - 1 Oct 2010
Externally publishedYes

Fingerprint

Dive into the research topics of 'A robust optimization approach for imprecise data envelopment analysis'. Together they form a unique fingerprint.

Cite this