A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making

Adel Hatami-Marbini, Ali Emrouznejad, Madjid Tavana

Research output: Contribution to journalReview articlepeer-review

367 Citations (Scopus)

Abstract

Data envelopment analysis (DEA) is a methodology for measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. Crisp input and output data are fundamentally indispensable in conventional DEA. However, the observed values of the input and output data in real-world problems are sometimes imprecise or vague. Many researchers have proposed various fuzzy methods for dealing with the imprecise and ambiguous data in DEA. In this study, we provide a taxonomy and review of the fuzzy DEA methods. We present a classification scheme with four primary categories, namely, the tolerance approach, the α-level based approach, the fuzzy ranking approach and the possibility approach. We discuss each classification scheme and group the fuzzy DEA papers published in the literature over the past 20 years. To the best of our knowledge, this paper appears to be the only review and complete source of references on fuzzy DEA.

Original languageEnglish
Pages (from-to)457-472
Number of pages16
JournalEuropean Journal of Operational Research
Volume214
Issue number3
Early online date8 Feb 2011
DOIs
Publication statusPublished - 1 Nov 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making'. Together they form a unique fingerprint.

Cite this