Active edge control in the Precessions polishing process for manufacturing large mirror segments

Hongyu Li, Wei Emma Zhang, David Walker, Guoyu Yu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

The segmentation of the primary mirror is the only promising solution for building the next generation of ground telescopes. However, manufacturing segmented mirrors presents its own challenges. The edge mis-figure impacts directly on the telescope's scientific output. The 'Edge effect' significantly dominates the polishing precision. Therefore, the edge control is regarded as one of the most difficult technical issues in the segment production that needs to be addressed urgently. This paper reports an active edge control technique for the mirror segments fabrication using the Precession's polishing technique. The strategy in this technique requires that the large spot be selected on the bulk area for fast polishing, and the small spot is used for edge figuring. This can be performed by tool lift and optimizing the dell time to compensate for non-uniform material removal at the edge zone. This requires accurate and stable edge tool influence functions. To obtain the full tool influence function at the edge, we have demonstrated in previous work a novel hybrid-measurement method which uses both simultaneous phase interferometry and profilometry. In this paper, the edge effect under 'Bonnet tool' polishing is investigated. The pressure distribution is analyzed by means of finite element analysis (FEA). According to the 'Preston' equation, the shape of the edge tool influence functions is predicted. With this help, the multiple process parameters at the edge zone are optimized. This is demonstrated on a 200mm crosscorners hexagonal part with a result of PV less than 200nm for entire surface.

Original languageEnglish
Title of host publication7th International Symposium on Advanced Optical Manufacturing and Testing Technologies
Subtitle of host publicationLarge Mirrors and Telescopes
EditorsWenhan Jiang, Myung K. Cho, Fan Wu
PublisherSPIE
Number of pages7
Volume9280
ISBN (Print)9781628413557
DOIs
Publication statusPublished - 2 Sep 2014
Externally publishedYes
Event7th International Symposium on Advanced Optical Manufacturing and Testing Technologies - Harbin, China
Duration: 26 Apr 201429 Apr 2014
Conference number: 7

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
PublisherSPIE
Volume9280
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

Conference7th International Symposium on Advanced Optical Manufacturing and Testing Technologies
Abbreviated titleAOMATT 2014
Country/TerritoryChina
CityHarbin
Period26/04/1429/04/14

Fingerprint

Dive into the research topics of 'Active edge control in the Precessions polishing process for manufacturing large mirror segments'. Together they form a unique fingerprint.

Cite this