TY - JOUR
T1 - Air Pollution Assessment in China
T2 - A Novel Group Multiple-Criteria Decision Making Model under Uncertain Information
AU - Hadi-Vencheh, Abdollah
AU - Tan, Aaron
AU - Wanke, Peter
AU - Loghmanian, Seyed
PY - 2021/2/2
Y1 - 2021/2/2
N2 - Assessment and controlling air pollution is an urgent global issue where international cooperation is deemed necessary. Although a very relevant data source can be obtained through continuous monitoring of air quality, measuring air pollutant concentrations is quite difficult when compared to other environmental indicators. We mainly have three different aims for the current study: 1) we propose the computation of interval weights of decision makers (DMs) based on a group multiple criteria decision making (GMCDM) model; 2) we aim to rank the overall preferences of DMs by the possibility concepts. 3) we aim to evaluate the air quality in China using the most recent data based on our proposed method. We considered three monitoring stations namely Luhu Park, Wanqingsha, Tianhu, and the data of SO2, NO2 and PM10 is collected for November 2017, 2018 and 2019. The results from our innovative model show that November 2019 has the best air quality. Finally, robustness analyses are also performed to confirm the discriminatory power of the proposed approach.
AB - Assessment and controlling air pollution is an urgent global issue where international cooperation is deemed necessary. Although a very relevant data source can be obtained through continuous monitoring of air quality, measuring air pollutant concentrations is quite difficult when compared to other environmental indicators. We mainly have three different aims for the current study: 1) we propose the computation of interval weights of decision makers (DMs) based on a group multiple criteria decision making (GMCDM) model; 2) we aim to rank the overall preferences of DMs by the possibility concepts. 3) we aim to evaluate the air quality in China using the most recent data based on our proposed method. We considered three monitoring stations namely Luhu Park, Wanqingsha, Tianhu, and the data of SO2, NO2 and PM10 is collected for November 2017, 2018 and 2019. The results from our innovative model show that November 2019 has the best air quality. Finally, robustness analyses are also performed to confirm the discriminatory power of the proposed approach.
KW - Air pollution
KW - Air quality
KW - Uncertain information
KW - Group multiple criteria decision-making (GMCDM)
KW - China
UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100662106&doi=10.3390%2fsu13041686&partnerID=40&md5=b5d1fd5c4bbd5f9c14e760a5417f9f5c
U2 - 10.3390/su13041686
DO - 10.3390/su13041686
M3 - Article
VL - 13
JO - Sustainability
JF - Sustainability
SN - 2071-1050
IS - 4
M1 - 1686
ER -