Abstract
Let G be a finitely generated solvable-by-finite linear group. We present an algorithm to compute the torsion-free rank of G and a bound on the Prüfer rank of G. This yields in turn an algorithm to decide whether a finitely generated subgroup of G has finite index. The algorithms are implemented in Magma for groups over algebraic number fields.
Original language | English |
---|---|
Pages (from-to) | 187–196 |
Number of pages | 10 |
Journal | Journal of Algebra |
Volume | 393 |
Issue number | 1 |
Early online date | 16 Jul 2013 |
DOIs | |
Publication status | Published - 1 Nov 2013 |
Externally published | Yes |