An assembly tolerance representation model based on spatial relations for generating assembly tolerance types

Yuchu Qin, Yanru Zhong, Meifa Huang, Fuyun Liu

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

The main advantage of polychromatic sets-based assembly tolerance representation model is that the number of feature types to be processed is larger. However, the number of recommended assembly tolerance types generated by the model is somewhat large for the same feature surfaces. Furthermore, the model cannot be directly applied to further assembly tolerance analysis and synthesis due to the fact that the information of degrees of freedom cannot be processed in polychromatic sets. To further reduce the number of recommended assembly tolerance types and to lay foundation for further assembly tolerance analysis and synthesis, a spatial relation layer is introduced into the polychromatic sets-based model and an assembly tolerance representation model based on spatial relations for generating assembly tolerance types is proposed. The proposed model is hierarchically organized and consists of part layer, assembly feature surface layer, spatial relation layer and assembly tolerance type layer. Each layer is defined with an adjacency matrix, respectively. By the mapping from spatial relations to assembly tolerance types, the number of recommended assembly tolerance types generated by the mapping from feature surfaces to assembly tolerance types is able to be further reduced. In addition, the information of degrees of freedom can be attached in the elements of adjacency matrices when recommended assembly tolerance types are generated by spatial relations so that the proposed model can be directly applied to further assembly tolerance analysis and synthesis. The effectiveness of the proposed model is demonstrated by an approach for generating assembly tolerance types and a practical example.
Original languageEnglish
Pages (from-to)1005-1020
Number of pages16
JournalProceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Volume228
Issue number6
Early online date9 Jul 2013
DOIs
Publication statusPublished - 1 Apr 2014
Externally publishedYes

Cite this

@article{6228e92871db4a408b7dbddca28743f0,
title = "An assembly tolerance representation model based on spatial relations for generating assembly tolerance types",
abstract = "The main advantage of polychromatic sets-based assembly tolerance representation model is that the number of feature types to be processed is larger. However, the number of recommended assembly tolerance types generated by the model is somewhat large for the same feature surfaces. Furthermore, the model cannot be directly applied to further assembly tolerance analysis and synthesis due to the fact that the information of degrees of freedom cannot be processed in polychromatic sets. To further reduce the number of recommended assembly tolerance types and to lay foundation for further assembly tolerance analysis and synthesis, a spatial relation layer is introduced into the polychromatic sets-based model and an assembly tolerance representation model based on spatial relations for generating assembly tolerance types is proposed. The proposed model is hierarchically organized and consists of part layer, assembly feature surface layer, spatial relation layer and assembly tolerance type layer. Each layer is defined with an adjacency matrix, respectively. By the mapping from spatial relations to assembly tolerance types, the number of recommended assembly tolerance types generated by the mapping from feature surfaces to assembly tolerance types is able to be further reduced. In addition, the information of degrees of freedom can be attached in the elements of adjacency matrices when recommended assembly tolerance types are generated by spatial relations so that the proposed model can be directly applied to further assembly tolerance analysis and synthesis. The effectiveness of the proposed model is demonstrated by an approach for generating assembly tolerance types and a practical example.",
keywords = "Spatial relation, Tolerance representation model, assembly tolerance types, generation of tolerance types",
author = "Yuchu Qin and Yanru Zhong and Meifa Huang and Fuyun Liu",
year = "2014",
month = "4",
day = "1",
doi = "10.1177/0954406213495501",
language = "English",
volume = "228",
pages = "1005--1020",
journal = "Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science",
issn = "0954-4062",
publisher = "SAGE Publications Ltd",
number = "6",

}

TY - JOUR

T1 - An assembly tolerance representation model based on spatial relations for generating assembly tolerance types

AU - Qin, Yuchu

AU - Zhong, Yanru

AU - Huang, Meifa

AU - Liu, Fuyun

PY - 2014/4/1

Y1 - 2014/4/1

N2 - The main advantage of polychromatic sets-based assembly tolerance representation model is that the number of feature types to be processed is larger. However, the number of recommended assembly tolerance types generated by the model is somewhat large for the same feature surfaces. Furthermore, the model cannot be directly applied to further assembly tolerance analysis and synthesis due to the fact that the information of degrees of freedom cannot be processed in polychromatic sets. To further reduce the number of recommended assembly tolerance types and to lay foundation for further assembly tolerance analysis and synthesis, a spatial relation layer is introduced into the polychromatic sets-based model and an assembly tolerance representation model based on spatial relations for generating assembly tolerance types is proposed. The proposed model is hierarchically organized and consists of part layer, assembly feature surface layer, spatial relation layer and assembly tolerance type layer. Each layer is defined with an adjacency matrix, respectively. By the mapping from spatial relations to assembly tolerance types, the number of recommended assembly tolerance types generated by the mapping from feature surfaces to assembly tolerance types is able to be further reduced. In addition, the information of degrees of freedom can be attached in the elements of adjacency matrices when recommended assembly tolerance types are generated by spatial relations so that the proposed model can be directly applied to further assembly tolerance analysis and synthesis. The effectiveness of the proposed model is demonstrated by an approach for generating assembly tolerance types and a practical example.

AB - The main advantage of polychromatic sets-based assembly tolerance representation model is that the number of feature types to be processed is larger. However, the number of recommended assembly tolerance types generated by the model is somewhat large for the same feature surfaces. Furthermore, the model cannot be directly applied to further assembly tolerance analysis and synthesis due to the fact that the information of degrees of freedom cannot be processed in polychromatic sets. To further reduce the number of recommended assembly tolerance types and to lay foundation for further assembly tolerance analysis and synthesis, a spatial relation layer is introduced into the polychromatic sets-based model and an assembly tolerance representation model based on spatial relations for generating assembly tolerance types is proposed. The proposed model is hierarchically organized and consists of part layer, assembly feature surface layer, spatial relation layer and assembly tolerance type layer. Each layer is defined with an adjacency matrix, respectively. By the mapping from spatial relations to assembly tolerance types, the number of recommended assembly tolerance types generated by the mapping from feature surfaces to assembly tolerance types is able to be further reduced. In addition, the information of degrees of freedom can be attached in the elements of adjacency matrices when recommended assembly tolerance types are generated by spatial relations so that the proposed model can be directly applied to further assembly tolerance analysis and synthesis. The effectiveness of the proposed model is demonstrated by an approach for generating assembly tolerance types and a practical example.

KW - Spatial relation

KW - Tolerance representation model

KW - assembly tolerance types

KW - generation of tolerance types

U2 - 10.1177/0954406213495501

DO - 10.1177/0954406213495501

M3 - Article

VL - 228

SP - 1005

EP - 1020

JO - Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

JF - Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

SN - 0954-4062

IS - 6

ER -