TY - JOUR
T1 - An Auto-Extraction Framework for CEP Rules Based on the Two-Layer LSTM Attention Mechanism
T2 - A Case Study on City Air Pollution Forecasting
AU - Liu, Yuan
AU - Yu, Wangyang
AU - Gao, Cong
AU - Chen, Minsi
N1 - Funding Information:
This work was supported by the Natural Science Foundation of Shaanxi Province under Grants 2021JM-205 and the UK Engineering and Physical Sciences Research Council through grants EP/V034111/1, Royal Society IEC/NSFC/201079.
Publisher Copyright:
© 2022 by the authors.
PY - 2022/8/14
Y1 - 2022/8/14
N2 - Energy is at the center of human society and drives the technologies and overall human well-being. Today, artificial intelligence (AI) technologies are widely used for system modeling, prediction, control, and optimization in the energy sector. The internet of things (IoT) is the core of the third wave of the information industry revolution and AI. In the energy sector, tens of billions of IoT appliances are linked to the Internet, and these appliances generate massive amounts of data every day. Extracting useful information from the massive amount of data will be a very meaningful thing. Complex event processing (CEP) is a stream-based technique that can extract beneficial information from real-time data through pre-establishing pattern rules. The formulation of pattern rules requires strong domain expertise. Therefore, at present, the pattern rules of CEP still need to be manually formulated by domain experts. However, in the face of complex, massive amounts of IoT data, manually setting rules will be a very difficult task. To address the issue, this paper proposes a CEP rule auto-extraction framework by combining deep learning methods with data mining algorithms. The framework can automatically extract pattern rules from unlabeled air pollution data. The deep learning model we presented is a two-layer LSTM (long short-term memory) with an attention mechanism. The framework has two phases: in the first phase, the anomalous data is filtered out and labeled from the IoT data through the deep learning model we proposed, and then the pattern rules are mined from the labeled data through the decision tree data mining algorithm in the second phase. We compare other deep learning models to evaluate the feasibility of the framework. In addition, in the rule extraction stage, we use a decision tree data mining algorithm, which can achieve high accuracy. Experiments have shown that the framework we proposed can effectively extract meaningful and accurate CEP rules. The research work in this paper will help support the advancement of the sector of air pollution prediction, assist in the establishment of air pollution regulatory strategies, and further contribute to the development of a green energy structure.
AB - Energy is at the center of human society and drives the technologies and overall human well-being. Today, artificial intelligence (AI) technologies are widely used for system modeling, prediction, control, and optimization in the energy sector. The internet of things (IoT) is the core of the third wave of the information industry revolution and AI. In the energy sector, tens of billions of IoT appliances are linked to the Internet, and these appliances generate massive amounts of data every day. Extracting useful information from the massive amount of data will be a very meaningful thing. Complex event processing (CEP) is a stream-based technique that can extract beneficial information from real-time data through pre-establishing pattern rules. The formulation of pattern rules requires strong domain expertise. Therefore, at present, the pattern rules of CEP still need to be manually formulated by domain experts. However, in the face of complex, massive amounts of IoT data, manually setting rules will be a very difficult task. To address the issue, this paper proposes a CEP rule auto-extraction framework by combining deep learning methods with data mining algorithms. The framework can automatically extract pattern rules from unlabeled air pollution data. The deep learning model we presented is a two-layer LSTM (long short-term memory) with an attention mechanism. The framework has two phases: in the first phase, the anomalous data is filtered out and labeled from the IoT data through the deep learning model we proposed, and then the pattern rules are mined from the labeled data through the decision tree data mining algorithm in the second phase. We compare other deep learning models to evaluate the feasibility of the framework. In addition, in the rule extraction stage, we use a decision tree data mining algorithm, which can achieve high accuracy. Experiments have shown that the framework we proposed can effectively extract meaningful and accurate CEP rules. The research work in this paper will help support the advancement of the sector of air pollution prediction, assist in the establishment of air pollution regulatory strategies, and further contribute to the development of a green energy structure.
KW - complex event processing (CEP)
KW - energy intelligent
KW - sustainable city
KW - the internet of things (IoT)
UR - http://www.scopus.com/inward/record.url?scp=85137727584&partnerID=8YFLogxK
U2 - 10.3390/en15165892
DO - 10.3390/en15165892
M3 - Article
AN - SCOPUS:85137727584
VL - 15
JO - Energies
JF - Energies
SN - 1996-1073
IS - 16
M1 - 5892
ER -