An Effective Video Processing Pipeline for Crowd Pattern Analysis

Yu Hao, Zhijie Xu, Jing Wang, Ying Liu, Jiulun Fan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

With the purpose of automatic detection of crowd patterns including abrupt and abnormal changes, a novel approach for extracting motion “textures” from dynamic Spatio-Temporal Volume (STV) blocks formulated by live video streams has been proposed. This paper starts from introducing the common approach for STV construction and corresponding Spatio-Temporal Texture (STT) extraction techniques. Next the crowd motion information contained within the random STT slices are evaluated based on the information entropy theory to cull the static background and noises occupying most of the STV spaces. A preprocessing step using Gabor filtering for improving the STT sampling efficiency and motion fidelity has been devised and tested. The technique has been applied on benchmarking video databases for proof-of-concept and performance evaluation. Preliminary results have shown encouraging outcomes and promising potentials for its real-world crowd monitoring and control applications.
Original languageEnglish
Title of host publicationProceedings of the 23rd International Conference on Automation & Computing, (University of Huddersfield, 7-8 September 2017)
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Electronic)9780701702601
ISBN (Print)9781509050406
DOIs
Publication statusPublished - 26 Oct 2017
Event23rd International Conference on Automation and Computing: Addressing Global Challenges through Automation and Computing - University of Huddersfield, Huddersfield, United Kingdom
Duration: 7 Sep 20178 Sep 2017
Conference number: 23
https://www.ieee.org/conferences_events/conferences/conferencedetails/index.html?Conf_ID=41042 (Link to Conference Website)

Conference

Conference23rd International Conference on Automation and Computing
Abbreviated titleICAC 2017
CountryUnited Kingdom
CityHuddersfield
Period7/09/178/09/17
OtherThe scope of the conference covers a broad spectrum of areas with multi-disciplinary interests in the fields of automation, control engineering, computing and information systems, ranging from fundamental research to real-world applications.
Internet address

Fingerprint

Pipelines
Textures
Processing
Benchmarking
Entropy
Sampling
Monitoring

Cite this

Hao, Y., Xu, Z., Wang, J., Liu, Y., & Fan, J. (2017). An Effective Video Processing Pipeline for Crowd Pattern Analysis. In Proceedings of the 23rd International Conference on Automation & Computing, (University of Huddersfield, 7-8 September 2017) Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.23919/IConAC.2017.8082025
Hao, Yu ; Xu, Zhijie ; Wang, Jing ; Liu, Ying ; Fan, Jiulun. / An Effective Video Processing Pipeline for Crowd Pattern Analysis. Proceedings of the 23rd International Conference on Automation & Computing, (University of Huddersfield, 7-8 September 2017). Institute of Electrical and Electronics Engineers Inc., 2017.
@inproceedings{5231b7d4de5c43a484de2e3f4fd3b8f2,
title = "An Effective Video Processing Pipeline for Crowd Pattern Analysis",
abstract = "With the purpose of automatic detection of crowd patterns including abrupt and abnormal changes, a novel approach for extracting motion “textures” from dynamic Spatio-Temporal Volume (STV) blocks formulated by live video streams has been proposed. This paper starts from introducing the common approach for STV construction and corresponding Spatio-Temporal Texture (STT) extraction techniques. Next the crowd motion information contained within the random STT slices are evaluated based on the information entropy theory to cull the static background and noises occupying most of the STV spaces. A preprocessing step using Gabor filtering for improving the STT sampling efficiency and motion fidelity has been devised and tested. The technique has been applied on benchmarking video databases for proof-of-concept and performance evaluation. Preliminary results have shown encouraging outcomes and promising potentials for its real-world crowd monitoring and control applications.",
keywords = "Crowd pattern analysis, Spatio-Temporal Volume, Spatio-Temporal Texture, Gabor filtering, Information entropy",
author = "Yu Hao and Zhijie Xu and Jing Wang and Ying Liu and Jiulun Fan",
year = "2017",
month = "10",
day = "26",
doi = "10.23919/IConAC.2017.8082025",
language = "English",
isbn = "9781509050406",
booktitle = "Proceedings of the 23rd International Conference on Automation & Computing, (University of Huddersfield, 7-8 September 2017)",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
address = "United States",

}

Hao, Y, Xu, Z, Wang, J, Liu, Y & Fan, J 2017, An Effective Video Processing Pipeline for Crowd Pattern Analysis. in Proceedings of the 23rd International Conference on Automation & Computing, (University of Huddersfield, 7-8 September 2017). Institute of Electrical and Electronics Engineers Inc., 23rd International Conference on Automation and Computing, Huddersfield, United Kingdom, 7/09/17. https://doi.org/10.23919/IConAC.2017.8082025

An Effective Video Processing Pipeline for Crowd Pattern Analysis. / Hao, Yu; Xu, Zhijie; Wang, Jing; Liu, Ying; Fan, Jiulun.

Proceedings of the 23rd International Conference on Automation & Computing, (University of Huddersfield, 7-8 September 2017). Institute of Electrical and Electronics Engineers Inc., 2017.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

TY - GEN

T1 - An Effective Video Processing Pipeline for Crowd Pattern Analysis

AU - Hao, Yu

AU - Xu, Zhijie

AU - Wang, Jing

AU - Liu, Ying

AU - Fan, Jiulun

PY - 2017/10/26

Y1 - 2017/10/26

N2 - With the purpose of automatic detection of crowd patterns including abrupt and abnormal changes, a novel approach for extracting motion “textures” from dynamic Spatio-Temporal Volume (STV) blocks formulated by live video streams has been proposed. This paper starts from introducing the common approach for STV construction and corresponding Spatio-Temporal Texture (STT) extraction techniques. Next the crowd motion information contained within the random STT slices are evaluated based on the information entropy theory to cull the static background and noises occupying most of the STV spaces. A preprocessing step using Gabor filtering for improving the STT sampling efficiency and motion fidelity has been devised and tested. The technique has been applied on benchmarking video databases for proof-of-concept and performance evaluation. Preliminary results have shown encouraging outcomes and promising potentials for its real-world crowd monitoring and control applications.

AB - With the purpose of automatic detection of crowd patterns including abrupt and abnormal changes, a novel approach for extracting motion “textures” from dynamic Spatio-Temporal Volume (STV) blocks formulated by live video streams has been proposed. This paper starts from introducing the common approach for STV construction and corresponding Spatio-Temporal Texture (STT) extraction techniques. Next the crowd motion information contained within the random STT slices are evaluated based on the information entropy theory to cull the static background and noises occupying most of the STV spaces. A preprocessing step using Gabor filtering for improving the STT sampling efficiency and motion fidelity has been devised and tested. The technique has been applied on benchmarking video databases for proof-of-concept and performance evaluation. Preliminary results have shown encouraging outcomes and promising potentials for its real-world crowd monitoring and control applications.

KW - Crowd pattern analysis

KW - Spatio-Temporal Volume

KW - Spatio-Temporal Texture

KW - Gabor filtering

KW - Information entropy

UR - http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1800563

U2 - 10.23919/IConAC.2017.8082025

DO - 10.23919/IConAC.2017.8082025

M3 - Conference contribution

SN - 9781509050406

BT - Proceedings of the 23rd International Conference on Automation & Computing, (University of Huddersfield, 7-8 September 2017)

PB - Institute of Electrical and Electronics Engineers Inc.

ER -

Hao Y, Xu Z, Wang J, Liu Y, Fan J. An Effective Video Processing Pipeline for Crowd Pattern Analysis. In Proceedings of the 23rd International Conference on Automation & Computing, (University of Huddersfield, 7-8 September 2017). Institute of Electrical and Electronics Engineers Inc. 2017 https://doi.org/10.23919/IConAC.2017.8082025