TY - JOUR
T1 - An Efficient Java-Based Solver for Abstract Argumentation Frameworks
T2 - jArgSemSAT
AU - Cerutti, Federico
AU - Vallati, Mauro
AU - Giacomin, Massimiliano
PY - 2017/4/12
Y1 - 2017/4/12
N2 - Dung’s argumentation frameworks are adopted in a variety of applications, from argument-mining, to intelligence analysis and legal reasoning. Despite this broad spectrum of already existing applications, the mostly adopted solver—in virtue of its simplicity—is far from being comparable to the current state-of-the-art solvers. On the other hand, most of the current state-of-the-art solvers are far too complicated to be deployed in real-world settings. In this paper we provide and extensive description of jArgSemSAT, a Java re-implementation of ArgSemSAT. ArgSemSAT represents the best single solver for argumentation semantics with the highest level of computational complexity. We show that jArgSemSAT can be easily integrated in existing argumentation systems (1) as an off-the-shelf, standalone, library; (2) as a Tweety compatible library; and (3) as a fast and robust web service freely available on the Web. Our large experimental analysis shows that despite being written in Java, jArgSemSAT would have scored in most of the cases among the three bests solvers for the two semantics with highest computational complexity “Stable and Preferred” in the last competition on computational models of argumentation.
AB - Dung’s argumentation frameworks are adopted in a variety of applications, from argument-mining, to intelligence analysis and legal reasoning. Despite this broad spectrum of already existing applications, the mostly adopted solver—in virtue of its simplicity—is far from being comparable to the current state-of-the-art solvers. On the other hand, most of the current state-of-the-art solvers are far too complicated to be deployed in real-world settings. In this paper we provide and extensive description of jArgSemSAT, a Java re-implementation of ArgSemSAT. ArgSemSAT represents the best single solver for argumentation semantics with the highest level of computational complexity. We show that jArgSemSAT can be easily integrated in existing argumentation systems (1) as an off-the-shelf, standalone, library; (2) as a Tweety compatible library; and (3) as a fast and robust web service freely available on the Web. Our large experimental analysis shows that despite being written in Java, jArgSemSAT would have scored in most of the cases among the three bests solvers for the two semantics with highest computational complexity “Stable and Preferred” in the last competition on computational models of argumentation.
KW - abstract argumentation
KW - argumentation semantics
KW - off-the-shelf solver
U2 - 10.1142/S0218213017500026
DO - 10.1142/S0218213017500026
M3 - Article
VL - 26
JO - International Journal on Artificial Intelligence Tools
JF - International Journal on Artificial Intelligence Tools
SN - 0218-2130
IS - 02
M1 - 1750002
ER -