Analysis of cell-cycle kinetics and sulfur amino acid metabolism in methionine-dependent tumor cell lines; the effect of homocysteine supplementation

Valérie Pavillard, Abedalnaser A A Drbal, David J. Swaine, Roger M. Phillips, John A. Double, Anna Nicolaou

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)

Abstract

Methionine dependence is a feature unique to cancer cells, exhibited as inability to grow in a methionine-depleted environment supplemented with homocysteine, the immediate metabolic precursor of methionine. This study explores the effect of methionine depletion and homocysteine supplementation on the viability, sulfur amino acid metabolism and cell-cycle kinetics of normal and cancer cells, as well as their ability to recover from the treatments. An array of cells including hepatomas (HTC, Phi-1), prostate adenocarcinomas (PC-3) and transformed (3T3) and normal (HS-27) fibroblasts, has been used aiming to evaluate the importance of tissue specificity. All cell lines proliferated well in methionine-complete media (M+H-), whilst only the normal fibroblasts HS-27 grew in methionine-depleted homocysteine-supplemented media (M-H+). None of the tested cell lines were able to grow in media without methionine or homocysteine (M-H-). HTC was the only cell line that did not recover from the M-H+ treatment whilst PC-3 did not recover from the M-H- treatment. Methionine and homocysteine depletion (M-H+ and M-H-) were found to induce arrest at different phases of the cell cycle, depending on the cell line: the methionine-dependent HTC, PC-3 and 3T3 arrested at the S and G2/M phase, whilst Phi-1 and the methionine-independent HS-27 accumulated in the G1 phase. The cell-cycle kinetics showed that the observed blockades were reversible. The information resulting from these studies is important for not only the behavior of cancer cells, but also for appreciating the potential of developing cancer therapies based on methionine-depletion strategies.

Original languageEnglish
Pages (from-to)1587-1599
Number of pages13
JournalBiochemical Pharmacology
Volume67
Issue number8
Early online date25 Feb 2004
DOIs
Publication statusPublished - 15 Apr 2004
Externally publishedYes

Fingerprint

Dive into the research topics of 'Analysis of cell-cycle kinetics and sulfur amino acid metabolism in methionine-dependent tumor cell lines; the effect of homocysteine supplementation'. Together they form a unique fingerprint.

Cite this