TY - JOUR
T1 - Archimedean Muirhead Aggregation Operators of q-Rung Orthopair Fuzzy Numbers for Multicriteria Group Decision Making
AU - Qin, Yuchu
AU - Cui, Xiaolan
AU - Huang, Meifa
AU - Zhong, Yanru
AU - Tang, Zhemin
AU - Shi, Peizhi
PY - 2019/12/17
Y1 - 2019/12/17
N2 - q-Rung orthopair fuzzy number (qROFN) is a flexible and superior fuzzy information description tool which can provide stronger expressiveness than intuitionistic fuzzy number and Pythagorean fuzzy number. Muirhead mean (MM) operator and its dual form geometric MM (GMM) operator are two all-in-one aggregation operators for capturing the interrelationships of the aggregated arguments because they are applicable in the cases in which all arguments are independent of each other, there are interrelationships between any two arguments, and there are interrelationships among any three or more arguments. Archimedean T-norm and T-conorm (ATT) are superior operations that can generate general and versatile operational rules to aggregate arguments. To take advantage of qROFN, MM operator, GMM operator, and ATT in multicriteria group decision making (MCGDM), an Archimedean MM operator, a weighted Archimedean MM operator, an Archimedean GMM operator, and a weighted Archimedean GMM operator for aggregating qROFNs are presented to solve the MCGDM problems based on qROFNs in this paper. The properties of these operators are explored and their specific cases are discussed. On the basis of the presented operators, a method for solving the MCGDM problems based on qROFNs is proposed. The effectiveness of the proposed method is demonstrated via a numerical example, a set of experiments, and qualitative and quantitative comparisons. The demonstration results suggest that the proposed method has satisfying generality and flexibility at aggregating q-rung orthopair fuzzy information and capturing the interrelationships of criteria and the attitudes of decision makers and is feasible and effective for solving the MCGDM problems based on qROFNs
AB - q-Rung orthopair fuzzy number (qROFN) is a flexible and superior fuzzy information description tool which can provide stronger expressiveness than intuitionistic fuzzy number and Pythagorean fuzzy number. Muirhead mean (MM) operator and its dual form geometric MM (GMM) operator are two all-in-one aggregation operators for capturing the interrelationships of the aggregated arguments because they are applicable in the cases in which all arguments are independent of each other, there are interrelationships between any two arguments, and there are interrelationships among any three or more arguments. Archimedean T-norm and T-conorm (ATT) are superior operations that can generate general and versatile operational rules to aggregate arguments. To take advantage of qROFN, MM operator, GMM operator, and ATT in multicriteria group decision making (MCGDM), an Archimedean MM operator, a weighted Archimedean MM operator, an Archimedean GMM operator, and a weighted Archimedean GMM operator for aggregating qROFNs are presented to solve the MCGDM problems based on qROFNs in this paper. The properties of these operators are explored and their specific cases are discussed. On the basis of the presented operators, a method for solving the MCGDM problems based on qROFNs is proposed. The effectiveness of the proposed method is demonstrated via a numerical example, a set of experiments, and qualitative and quantitative comparisons. The demonstration results suggest that the proposed method has satisfying generality and flexibility at aggregating q-rung orthopair fuzzy information and capturing the interrelationships of criteria and the attitudes of decision makers and is feasible and effective for solving the MCGDM problems based on qROFNs
KW - q-Rung Orthopair Fuzzy Numbers
KW - superior fuzzy information description tool
KW - Archimedean Muirhead Aggregation Operators
UR - http://www.scopus.com/inward/record.url?scp=85077384132&partnerID=8YFLogxK
U2 - 10.1155/2019/3103741
DO - 10.1155/2019/3103741
M3 - Article
VL - 2019
SP - 1
EP - 33
JO - Complexity
JF - Complexity
SN - 1076-2787
M1 - 3103741
ER -