TY - JOUR
T1 - Atomic layer deposition of Ti-HfO2 dielectrics
AU - Werner, Matthew
AU - King, Peter J.
AU - Hindley, Sarah
AU - Romani, Simon
AU - Mather, Sean
AU - Chalker, Paul R.
AU - Williams, Paul A.
AU - Van Den Berg, Jakob A.
PY - 2013/1
Y1 - 2013/1
N2 - Titanium-doped hafnium oxide films, TixHf1-xO 2-δ, have been deposited with a Ti content of x = 0.1 and x = 0.5, by atomic layer deposition. The TixHf1-xO 2-δ growth rate is lower compared with the growth rates of the individual binary oxides; however, the composition of the films is unaffected by the reduced growth rate. An 850 °C spike anneal and a 500 °C 30 min furnace anneal were performed, and the resulting film composition and structure was determined using medium energy ion scattering, x-ray diffraction, and transmission electron microscopy. The Ti0.1Hf0.9O 2-δ films readily crystallize into a monoclinic phase during both types of annealing. By contrast, the Ti0.5Hf0.5O 2-δ films remain amorphous during both annealing processes. Electrical characterization of the as-deposited Ti0.1Hf 0.9O2-δ films yielded a dielectric constant of 20, which is slightly higher than undoped HfO2 films. The as-deposited Ti0.5Hf0.5O2-δ films showed a significant increase in dielectric constant up to 35. After a 500 °C 30 min anneal, the dielectric constant reduced slightly to 27. The leakage current density of the amorphous film remains relatively unaffected at 8.7×10-7 A/cm2 at -1 MV/cm, suggesting this composition/heat treatment is a candidate for future device dielectrics. © 2013 American Vacuum Society.
AB - Titanium-doped hafnium oxide films, TixHf1-xO 2-δ, have been deposited with a Ti content of x = 0.1 and x = 0.5, by atomic layer deposition. The TixHf1-xO 2-δ growth rate is lower compared with the growth rates of the individual binary oxides; however, the composition of the films is unaffected by the reduced growth rate. An 850 °C spike anneal and a 500 °C 30 min furnace anneal were performed, and the resulting film composition and structure was determined using medium energy ion scattering, x-ray diffraction, and transmission electron microscopy. The Ti0.1Hf0.9O 2-δ films readily crystallize into a monoclinic phase during both types of annealing. By contrast, the Ti0.5Hf0.5O 2-δ films remain amorphous during both annealing processes. Electrical characterization of the as-deposited Ti0.1Hf 0.9O2-δ films yielded a dielectric constant of 20, which is slightly higher than undoped HfO2 films. The as-deposited Ti0.5Hf0.5O2-δ films showed a significant increase in dielectric constant up to 35. After a 500 °C 30 min anneal, the dielectric constant reduced slightly to 27. The leakage current density of the amorphous film remains relatively unaffected at 8.7×10-7 A/cm2 at -1 MV/cm, suggesting this composition/heat treatment is a candidate for future device dielectrics. © 2013 American Vacuum Society.
UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-84871863248&doi=10.1116%2f1.4748570&partnerID=40&md5=a0a4db5fa9375dd0b06dd0c4ffb03d84
U2 - 10.1116/1.4748570
DO - 10.1116/1.4748570
M3 - Article
VL - 31
JO - Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
JF - Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
SN - 0734-2101
IS - 1
ER -