Automatic Diagnosis of Attention Deficit Hyperactivity Disorder Using Machine Learning

Research output: Contribution to journalArticle

Abstract

Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that includes symptoms such as inattentiveness, hyperactivity and impulsiveness. It is considered as an important public health issue, and prevalence of diagnosis has increased as awareness of the disease grew over the past years. Supply of specialist medical experts has not kept pace with the increasing demand for assessment, both due to financial pressures on health systems and the difficulty to train new experts, resulting in growing waiting lists. Patients are not being treated quickly enough causing problems in other areas of health systems (e.g. increased GP visits, increased risk of self-harm and accidents) and more broadly (e.g. time off work, relationship problems). Advances in machine learning make it possible to attempt to diagnose ADHD based on the analysis of relevant data, and this could inform clinical practice. This paper reports on findings related to the mental health services of a specialist Trust within the UK’s National Health Service (NHS). The analysis studied data of adult patients who underwent diagnosis over the past few years, and developed a diagnostic model for ADHD in adults. The results demonstrate that it is indeed possible to correctly diagnose ADHD patients with promising statistical accuracy.
Original languageEnglish
JournalApplied Artificial Intelligence
Publication statusAccepted/In press - 27 Dec 2019

Fingerprint

Learning systems
Health
Public health
Accidents

Cite this

@article{499a1912e4ed415f8d0b3bc3689f122c,
title = "Automatic Diagnosis of Attention Deficit Hyperactivity Disorder Using Machine Learning",
abstract = "Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that includes symptoms such as inattentiveness, hyperactivity and impulsiveness. It is considered as an important public health issue, and prevalence of diagnosis has increased as awareness of the disease grew over the past years. Supply of specialist medical experts has not kept pace with the increasing demand for assessment, both due to financial pressures on health systems and the difficulty to train new experts, resulting in growing waiting lists. Patients are not being treated quickly enough causing problems in other areas of health systems (e.g. increased GP visits, increased risk of self-harm and accidents) and more broadly (e.g. time off work, relationship problems). Advances in machine learning make it possible to attempt to diagnose ADHD based on the analysis of relevant data, and this could inform clinical practice. This paper reports on findings related to the mental health services of a specialist Trust within the UK’s National Health Service (NHS). The analysis studied data of adult patients who underwent diagnosis over the past few years, and developed a diagnostic model for ADHD in adults. The results demonstrate that it is indeed possible to correctly diagnose ADHD patients with promising statistical accuracy.",
keywords = "attention deficit hyperactivity disorder, ADHD, machine learning",
author = "Tianhua Chen and Grigoris Antoniou and Marios Adamou and Ilias Tachmazidis and Pan Su",
year = "2019",
month = "12",
day = "27",
language = "English",
journal = "Applied Artificial Intelligence",
issn = "0883-9514",
publisher = "Taylor and Francis Ltd.",

}

TY - JOUR

T1 - Automatic Diagnosis of Attention Deficit Hyperactivity Disorder Using Machine Learning

AU - Chen, Tianhua

AU - Antoniou, Grigoris

AU - Adamou, Marios

AU - Tachmazidis, Ilias

AU - Su, Pan

PY - 2019/12/27

Y1 - 2019/12/27

N2 - Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that includes symptoms such as inattentiveness, hyperactivity and impulsiveness. It is considered as an important public health issue, and prevalence of diagnosis has increased as awareness of the disease grew over the past years. Supply of specialist medical experts has not kept pace with the increasing demand for assessment, both due to financial pressures on health systems and the difficulty to train new experts, resulting in growing waiting lists. Patients are not being treated quickly enough causing problems in other areas of health systems (e.g. increased GP visits, increased risk of self-harm and accidents) and more broadly (e.g. time off work, relationship problems). Advances in machine learning make it possible to attempt to diagnose ADHD based on the analysis of relevant data, and this could inform clinical practice. This paper reports on findings related to the mental health services of a specialist Trust within the UK’s National Health Service (NHS). The analysis studied data of adult patients who underwent diagnosis over the past few years, and developed a diagnostic model for ADHD in adults. The results demonstrate that it is indeed possible to correctly diagnose ADHD patients with promising statistical accuracy.

AB - Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that includes symptoms such as inattentiveness, hyperactivity and impulsiveness. It is considered as an important public health issue, and prevalence of diagnosis has increased as awareness of the disease grew over the past years. Supply of specialist medical experts has not kept pace with the increasing demand for assessment, both due to financial pressures on health systems and the difficulty to train new experts, resulting in growing waiting lists. Patients are not being treated quickly enough causing problems in other areas of health systems (e.g. increased GP visits, increased risk of self-harm and accidents) and more broadly (e.g. time off work, relationship problems). Advances in machine learning make it possible to attempt to diagnose ADHD based on the analysis of relevant data, and this could inform clinical practice. This paper reports on findings related to the mental health services of a specialist Trust within the UK’s National Health Service (NHS). The analysis studied data of adult patients who underwent diagnosis over the past few years, and developed a diagnostic model for ADHD in adults. The results demonstrate that it is indeed possible to correctly diagnose ADHD patients with promising statistical accuracy.

KW - attention deficit hyperactivity disorder

KW - ADHD

KW - machine learning

M3 - Article

JO - Applied Artificial Intelligence

JF - Applied Artificial Intelligence

SN - 0883-9514

ER -