Bayesian Segmentation and Clustering for Determining Cloud Mask Images

D. Barreto, F. Murtagh, J. Marcello

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

We assess both marginal density clustering, and spatial clustering using a Markov random field, on multiband Earth observation data. We use a Bayes factor assessment procedure in all cases. We find that the spatial model leads to better results, although the non-spatial clustering achieves a better false alarm rate.

Original languageEnglish
Title of host publicationOpto-Ireland 2002
Subtitle of host publicationOptical Metrology, Imaging, and Machine Vision
EditorsAndrew Shearer, Fionn D. Murtagh, James Mahon, Paul F. Whelan
PublisherSPIE
Pages144-155
Number of pages12
Volume4877
ISBN (Print)0819446580, 9780819446589
DOIs
Publication statusPublished - 19 Mar 2003
Externally publishedYes
EventOpto-Ireland 2002: Optical metrology, Imaging, and Machine Vision - Galway, Ireland
Duration: 5 Sep 20026 Sep 2002
https://www.researchgate.net/publication/260899755_Opto-Ireland_2002_Optical_Metrology_Imaging_and_Machine_Vision

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
PublisherSPIE
Volume4877
ISSN (Print)0277-786X

Conference

ConferenceOpto-Ireland 2002: Optical metrology, Imaging, and Machine Vision
Country/TerritoryIreland
CityGalway
Period5/09/026/09/02
Internet address

Fingerprint

Dive into the research topics of 'Bayesian Segmentation and Clustering for Determining Cloud Mask Images'. Together they form a unique fingerprint.

Cite this