Abstract
The quasiparticle excitation spectra of a Bose gas trapped in a highly anisotropic trap is studied with respect to varying total number of particles by numerically solving the effective one-dimensional (1D) Gross–Pitaevskii (GP) equation proposed recently by Mateo et al. We obtain the static properties and Bogoliubov spectra of the system in the high energy domain. This method is computationally efficient and highly accurate for a condensate system undergoing a 1D to three-dimensional (3D) cigar-shaped transition, as is shown through a comparison of our results with both those calculated by the 3D-GP equation and analytical results obtained in limiting cases. We identify the applicable parameter space for the effective 1D-GP equation and find that this equation fails to describe a system with a large number of atoms. We also identify that the description of the transition from 1D Bose–Einstein condensate (BEC) to 3D cigar-shaped BEC using this equation is not smooth, which highlights the fact that for a finite value of a⊥/as the junction between the 1D and 3D crossover is not perfect.
Original language | English |
---|---|
Article number | 035302 |
Journal | Journal of Physics B: Atomic, Molecular and Optical Physics |
Volume | 47 |
Issue number | 3 |
Early online date | 21 Jan 2014 |
DOIs | |
Publication status | Published - 14 Feb 2014 |
Externally published | Yes |
Fingerprint
Dive into the research topics of 'Bogoliubov excitation spectrum of an elongated condensate throughout a transition from quasi-one-dimensional to three-dimensional'. Together they form a unique fingerprint.Profiles
-
Andrew Henning
- Department of Engineering - Research Programme Lead (Principal Industrial Fellow)
- School of Computing and Engineering
- Centre for Precision Technologies - Member
Person: Academic