TY - JOUR
T1 - Characterizing acoustic emission signals for the online monitoring of a fluid magnetic abrasives finishing process
AU - Sun, Huanwu
AU - Wang, Juan
AU - Longstaff, Andrew
AU - Gu, Fengshou
PY - 2017/5/30
Y1 - 2017/5/30
N2 - To implement an automated fluid magnetic abrasive finishing process, an online monitoring scheme is proposed based on characterizing acoustic emission signals in this paper. According to the material removal mechanisms during the fluid magnetic abrasive finishing process, the acoustic emission generation and characteristics are predicted analytically to be dominated by the interactions between the surface asperities and the abrasive particles. Moreover, the interactions and corresponding acoustic emission events will become weaker as the finishing process progresses and the surface becomes smoother. Experimental studies show that the amplitude and the occurrence rate of continuous acoustic emission waves and intermediate bursts reduce gradually with the progression of the finishing process. Based on these features, root mean squared values and burst occurrence rates, being of the lowest computational requirements, are suggested as online monitoring parameters for an automated and intelligent finishing in fluid magnetic abrasive manufacturing. The proposed method is verified experimentally, showing that the root mean squared values are highly consistent with the measured surface roughness values, which confirms the dynamic mechanisms between the fluid magnetic abrasive finishing and acoustic emission generation sources examined.
AB - To implement an automated fluid magnetic abrasive finishing process, an online monitoring scheme is proposed based on characterizing acoustic emission signals in this paper. According to the material removal mechanisms during the fluid magnetic abrasive finishing process, the acoustic emission generation and characteristics are predicted analytically to be dominated by the interactions between the surface asperities and the abrasive particles. Moreover, the interactions and corresponding acoustic emission events will become weaker as the finishing process progresses and the surface becomes smoother. Experimental studies show that the amplitude and the occurrence rate of continuous acoustic emission waves and intermediate bursts reduce gradually with the progression of the finishing process. Based on these features, root mean squared values and burst occurrence rates, being of the lowest computational requirements, are suggested as online monitoring parameters for an automated and intelligent finishing in fluid magnetic abrasive manufacturing. The proposed method is verified experimentally, showing that the root mean squared values are highly consistent with the measured surface roughness values, which confirms the dynamic mechanisms between the fluid magnetic abrasive finishing and acoustic emission generation sources examined.
KW - Fluid magnetic abrasive finishing
KW - acoustic emission
KW - precision machining
KW - surface morphology
KW - intelligent manufacturing
U2 - 10.1177/0954406217712744
DO - 10.1177/0954406217712744
M3 - Article
SP - 1
EP - 9
JO - Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
JF - Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
SN - 0954-4062
ER -