TY - JOUR
T1 - Characterizing the Vibration Responses of Flexible Workpieces during the Turning Process for Quality Control
AU - Li, Chun
AU - Zou, Zhexiang
AU - Duan, Wenbo
AU - Liu, Jiajie
AU - Gu, Fengshou
AU - Ball, Andrew
PY - 2023/12/1
Y1 - 2023/12/1
N2 - The chatter that occurs during the turning operation, especially when cutting a slender and flexible shaft, determines the surface quality of the workpiece and the stability of the machining system. However, when building a dynamic model of a slender workpiece with a chuck and tailstock, it is generally regarded as a cantilever or simply supported beam, without consideration of the axial force and supported stiffness effect. In this work, a dynamic model for thin and flexible workpieces with different clamping boundary conditions was first built. Then, a finite element analysis (FEA) was used to study the influence of the axial force and supporting stiffness on the mode frequencies of the workpiece. A further analysis found that the relationship between support stiffness, axial force, and the dynamic response of the workpiece is nonlinear and far more complex than that of the simply supported beam model. The clamping force directly influenced the magnitude of the vibration response with the decrease of shaft stiffness during the turning process. These results were verified experimentally by measuring the vibrational response of slender shafts with different clamping modes using an on-rotor sensing (ORS) system. It proved that the proposed model shows advantages for the identification of dynamic vibration and quality control when machining slender workpieces.
AB - The chatter that occurs during the turning operation, especially when cutting a slender and flexible shaft, determines the surface quality of the workpiece and the stability of the machining system. However, when building a dynamic model of a slender workpiece with a chuck and tailstock, it is generally regarded as a cantilever or simply supported beam, without consideration of the axial force and supported stiffness effect. In this work, a dynamic model for thin and flexible workpieces with different clamping boundary conditions was first built. Then, a finite element analysis (FEA) was used to study the influence of the axial force and supporting stiffness on the mode frequencies of the workpiece. A further analysis found that the relationship between support stiffness, axial force, and the dynamic response of the workpiece is nonlinear and far more complex than that of the simply supported beam model. The clamping force directly influenced the magnitude of the vibration response with the decrease of shaft stiffness during the turning process. These results were verified experimentally by measuring the vibrational response of slender shafts with different clamping modes using an on-rotor sensing (ORS) system. It proved that the proposed model shows advantages for the identification of dynamic vibration and quality control when machining slender workpieces.
KW - vibration response
KW - turning process
KW - on-rotor sensing (ORS)
KW - dynamic models
KW - finite element analysis (FEA)
UR - http://www.scopus.com/inward/record.url?scp=85186677914&partnerID=8YFLogxK
U2 - 10.3390/app132312611
DO - 10.3390/app132312611
M3 - Article
VL - 13
JO - Applied Sciences (Switzerland)
JF - Applied Sciences (Switzerland)
SN - 2076-3417
IS - 23
M1 - 12611
ER -