TY - JOUR
T1 - Complexity of super-coherence problems in ASP
AU - Alviano, Mario
AU - Faber, Wolfgang
AU - Woltran, Stefan
PY - 2014/5/1
Y1 - 2014/5/1
N2 - Adapting techniques from database theory in order to optimize Answer Set Programming (ASP) systems, and in particular the grounding components of ASP systems, is an important topic in ASP. In recent years, the Magic Set method has received some interest in this setting, and a variant of it, called Dynamic Magic Set, has been proposed for ASP. However, this technique has a caveat, because it is not correct (in the sense of being query-equivalent) for all ASP programs. In a recent work, a large fragment of ASP programs, referred to as super-coherent programs, has been identified, for which Dynamic Magic Set is correct. The fragment contains all programs which possess at least one answer set, no matter which set of facts is added to them. Two open question remained: How complex is it to determine whether a given program is super-coherent? Does the restriction to super-coherent programs limit the problems that can be solved? Especially the first question turned out to be quite difficult to answer precisely. In this paper, we formally prove that deciding whether a propositional program is super-coherent is Π3P-complete in the disjunctive case, while it is Π2P-complete for normal programs. The hardness proofs are the difficult part in this endeavor: We proceed by characterizing the reductions by the models and reduct models which the ASP programs should have, and then provide instantiations that meet the given specifications. Concerning the second question, we show that all relevant ASP reasoning tasks can be transformed into tasks over super-coherent programs, although this transformation is more of theoretical than practical interest.
AB - Adapting techniques from database theory in order to optimize Answer Set Programming (ASP) systems, and in particular the grounding components of ASP systems, is an important topic in ASP. In recent years, the Magic Set method has received some interest in this setting, and a variant of it, called Dynamic Magic Set, has been proposed for ASP. However, this technique has a caveat, because it is not correct (in the sense of being query-equivalent) for all ASP programs. In a recent work, a large fragment of ASP programs, referred to as super-coherent programs, has been identified, for which Dynamic Magic Set is correct. The fragment contains all programs which possess at least one answer set, no matter which set of facts is added to them. Two open question remained: How complex is it to determine whether a given program is super-coherent? Does the restriction to super-coherent programs limit the problems that can be solved? Especially the first question turned out to be quite difficult to answer precisely. In this paper, we formally prove that deciding whether a propositional program is super-coherent is Π3P-complete in the disjunctive case, while it is Π2P-complete for normal programs. The hardness proofs are the difficult part in this endeavor: We proceed by characterizing the reductions by the models and reduct models which the ASP programs should have, and then provide instantiations that meet the given specifications. Concerning the second question, we show that all relevant ASP reasoning tasks can be transformed into tasks over super-coherent programs, although this transformation is more of theoretical than practical interest.
KW - Answer Set Programming (ASP)
KW - coherence
KW - complexity analysis
KW - foundations
KW - uniform equivalence
UR - http://www.scopus.com/inward/record.url?scp=84898486974&partnerID=8YFLogxK
U2 - 10.1017/S147106841300001X
DO - 10.1017/S147106841300001X
M3 - Article
AN - SCOPUS:84898486974
VL - 14
SP - 339
EP - 361
JO - Theory and Practice of Logic Programming
JF - Theory and Practice of Logic Programming
SN - 1471-0684
IS - 3
ER -