Abstract
Envelope analysis plays an important role in the field of bearing faults detection. Since the development of this technique, the determination of optimal bands has been a prior challenge. Fast Kurtogram (FK) is an outstanding approach to select an optimal band for further analysis; however, fast Kurtogram is not robust enough to withstand the influence of white noise and large aperiodic impulses. Hence, a more robust method is introduced to extract the narrow bands for envelope analysis, which is ensemble average autocorrelation based stochastic subspace identification (SSI). The detector performs well in denoising and highlighting the periodic impulses owing to the outstanding characteristics of autocorrelation function and stochastic subspace identification. Considering the results of simulation study and experimental evaluation, it can be concluded that the proposed method is more effective and robust to detect bearing faults than fast Kurtogram.
Original language | English |
---|---|
Title of host publication | Proceedings of COMADEM 2017 |
Editors | I. Sherrington, A. Onsy, R. Rao, H. Brooks, J. Philip |
Pages | 389-395 |
Number of pages | 7 |
Publication status | Published - Jul 2017 |
Event | 30th International Congress & Exhibition on Condition Monitoring and Diagnostic Engineering Management - University of Central Lancashire, Preston, United Kingdom Duration: 10 Jul 2017 → 13 Jul 2017 Conference number: 30 http://www.comadem2017.com/ (Link to Conference Website) |
Conference
Conference | 30th International Congress & Exhibition on Condition Monitoring and Diagnostic Engineering Management |
---|---|
Abbreviated title | COMADEM 2017 |
Country/Territory | United Kingdom |
City | Preston |
Period | 10/07/17 → 13/07/17 |
Internet address |
|