Detection of incipient tooth defect in helical gears using multivariate statistics

N. Baydar, Q. Chen, A. Ball, U. Kruger

Research output: Contribution to journalArticlepeer-review

77 Citations (Scopus)

Abstract

Multivariate statistical techniques have been successfully used for monitoring process plants and their associated instrumentation. These techniques effectively detect disturbances related to individual measurement sources and consequently provide diagnostic information about the process input. This paper investigates and explores the use of multivariate statistical techniques in a two-stage industrial helical gearbox, to detect localised faults by using vibration signals. The vibration signals, obtained from a number of sensors, are synchronously averaged and then the multivariate statistics, based on principal components analysis, is employed to form a normal (reference) condition model. Fault conditions, which are deviations from a reference model, are detected by monitoring Q- and T2-statistics. Normal operating regions or confidence bounds, based on kernel density estimation (KDE) is introduced to capture the faulty conditions in the gearbox. It is found that Q- and T2-statistics based on PCA can detect incipient local faults at an early stage. The confidence regions, based on KDE can also reveal the growing faults in the gearbox.

Original languageEnglish
Pages (from-to)303-321
Number of pages19
JournalMechanical Systems and Signal Processing
Volume15
Issue number2
DOIs
Publication statusPublished - 1 Mar 2001
Externally publishedYes

Fingerprint

Dive into the research topics of 'Detection of incipient tooth defect in helical gears using multivariate statistics'. Together they form a unique fingerprint.

Cite this