TY - JOUR
T1 - Development of a Novel Methodology for Calculating the Thermal Efficiency of Clean Fuel Boilers based on Error Analysis Method
AU - liu, Xiaozhou
AU - asim, Taimoor
AU - Zhu, Guangyu
AU - Zhang , Yu
AU - Mishra, Rakesh
PY - 2019/8/2
Y1 - 2019/8/2
N2 - Clean fuel boilers often use natural gas and wood pellets as their primary fuel, which result in reduced emissions from the boiler. Accurate determination of the thermal efficiency of these boilers plays a vital role in appropriately controlling the process parameters for enhanced thermal performance of the boilers. The traditional methods for calculating the thermal efficiency of clean fuel boilers require a number of input parameters, which is not suitable for fast calculation of the thermal efficiency. Moreover, the conventional methods are often significantly inaccurate in the determination of the thermal efficiency of boilers. Thus, a novel method for rapid and accurate determination of boiler’s thermal efficiency is required. Therefore, using error analysis method, this study presents a novel mathematical model to calculate the thermal efficiency of an industrial boiler, fueled with natural gas and wood pellets. The main factors that affect the thermal efficiency of clean fuel industrial boilers are obtained based on the results of the thermal efficiency error analysis. A novel mathematical model to calculate the thermal efficiency of the boilers is developed as a function of these major factors. Finally, the calculated results, based on the model, are compared with the test values provided by Guangdong Special Equipment Inspection and Research Institute. The maximum deviation in comparative results has been observed to be within ±3%, indicating the appropriateness and commercial viability of the novel methodology proposed in this study.
AB - Clean fuel boilers often use natural gas and wood pellets as their primary fuel, which result in reduced emissions from the boiler. Accurate determination of the thermal efficiency of these boilers plays a vital role in appropriately controlling the process parameters for enhanced thermal performance of the boilers. The traditional methods for calculating the thermal efficiency of clean fuel boilers require a number of input parameters, which is not suitable for fast calculation of the thermal efficiency. Moreover, the conventional methods are often significantly inaccurate in the determination of the thermal efficiency of boilers. Thus, a novel method for rapid and accurate determination of boiler’s thermal efficiency is required. Therefore, using error analysis method, this study presents a novel mathematical model to calculate the thermal efficiency of an industrial boiler, fueled with natural gas and wood pellets. The main factors that affect the thermal efficiency of clean fuel industrial boilers are obtained based on the results of the thermal efficiency error analysis. A novel mathematical model to calculate the thermal efficiency of the boilers is developed as a function of these major factors. Finally, the calculated results, based on the model, are compared with the test values provided by Guangdong Special Equipment Inspection and Research Institute. The maximum deviation in comparative results has been observed to be within ±3%, indicating the appropriateness and commercial viability of the novel methodology proposed in this study.
KW - Clean fuel boiler
KW - Thermal efficiency
KW - Mathematical model
KW - Error analysis
UR - http://www.scopus.com/inward/record.url?scp=85088896524&partnerID=8YFLogxK
M3 - Article
VL - 22
SP - 5
EP - 9
JO - International Journal of COMADEM
JF - International Journal of COMADEM
SN - 1363-7681
IS - 2
ER -