Development of thermoacoustic devices for power generation and refrigeration

AJ Jaworski, Xiaoan Mao

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

This paper is intended as a technical overview of the research and development work initially undertaken at the University of Manchester and subsequently transferred to the University of Leicester as part of the EPSRC-funded SCORE project (Stove for Cooking, Refrigeration and Electricity supply). The objectives of the work were twofold: Firstly, to develop an early demonstrator of a low-power electricity generator (to deliver approximately 10–20 W of electricity). This was to be based on the concept of using low-cost materials, working fluids and linear alternators suitable for deployment in rural areas of developing countries. The issues of concern here were the development of a suitable thermoacoustic engine topology and control measures; design of suitable heat exchanger configurations from initial use of electrical heaters to heat input through propane combustion; and characterisation of commercial loudspeakers to work as linear alternators and subsequent incorporation of selected models for engine prototyping purposes. These matters will be illustrated by a number of demonstrators and their testing in the laboratory environment. Secondly, to develop a demonstrator of a combustion driven thermoacoustic cooler for storage of vital medical supplies in remote and rural areas where there is no access to electricity grid. To this end, the paper will describe the design, construction and test results of an electrically driven demonstrator of a standing wave thermoacoustic engine coupled to a travelling wave thermoacoustic cooler. The final part of the paper will summarise the achievements to date and outline future work that has spun out from the original SCORE project. This will in particular include the current work on a scaled up version of electricity generator designed to deliver 100 W of electricity by using a two-stage engine configuration and the issues of integration of the thermoacoustic electricity generator and thermoacoustic cooler into one system.
LanguageEnglish
Pages762-782
Number of pages21
JournalProceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
Volume227
Issue number7
Early online date20 Aug 2013
DOIs
Publication statusPublished - 2013
Externally publishedYes

Fingerprint

Thermoacoustics
Refrigeration
Power generation
Electricity
Thermoacoustic engines
Acoustic generators
Engines
Stoves
Biomedical equipment
Gas generators
Loudspeakers
Cooking
Developing countries
Propane
Heat exchangers
Topology
Fluids
Testing

Cite this

@article{480afd909f0d4192a55d80fc0c79c39f,
title = "Development of thermoacoustic devices for power generation and refrigeration",
abstract = "This paper is intended as a technical overview of the research and development work initially undertaken at the University of Manchester and subsequently transferred to the University of Leicester as part of the EPSRC-funded SCORE project (Stove for Cooking, Refrigeration and Electricity supply). The objectives of the work were twofold: Firstly, to develop an early demonstrator of a low-power electricity generator (to deliver approximately 10–20 W of electricity). This was to be based on the concept of using low-cost materials, working fluids and linear alternators suitable for deployment in rural areas of developing countries. The issues of concern here were the development of a suitable thermoacoustic engine topology and control measures; design of suitable heat exchanger configurations from initial use of electrical heaters to heat input through propane combustion; and characterisation of commercial loudspeakers to work as linear alternators and subsequent incorporation of selected models for engine prototyping purposes. These matters will be illustrated by a number of demonstrators and their testing in the laboratory environment. Secondly, to develop a demonstrator of a combustion driven thermoacoustic cooler for storage of vital medical supplies in remote and rural areas where there is no access to electricity grid. To this end, the paper will describe the design, construction and test results of an electrically driven demonstrator of a standing wave thermoacoustic engine coupled to a travelling wave thermoacoustic cooler. The final part of the paper will summarise the achievements to date and outline future work that has spun out from the original SCORE project. This will in particular include the current work on a scaled up version of electricity generator designed to deliver 100 W of electricity by using a two-stage engine configuration and the issues of integration of the thermoacoustic electricity generator and thermoacoustic cooler into one system.",
keywords = "Advanced power cycles, Biomass, Energy conversion/recovery, Engine testing, Heat exchangers, Heat recovery, Power from waste and biomass, Power generation, Shell/tube heat exchanges, Stirling engines, Thermoacoustic refrigeration",
author = "AJ Jaworski and Xiaoan Mao",
year = "2013",
doi = "10.1177/0957650913493622",
language = "English",
volume = "227",
pages = "762--782",
journal = "Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy",
issn = "0957-6509",
publisher = "SAGE Publications",
number = "7",

}

TY - JOUR

T1 - Development of thermoacoustic devices for power generation and refrigeration

AU - Jaworski, AJ

AU - Mao, Xiaoan

PY - 2013

Y1 - 2013

N2 - This paper is intended as a technical overview of the research and development work initially undertaken at the University of Manchester and subsequently transferred to the University of Leicester as part of the EPSRC-funded SCORE project (Stove for Cooking, Refrigeration and Electricity supply). The objectives of the work were twofold: Firstly, to develop an early demonstrator of a low-power electricity generator (to deliver approximately 10–20 W of electricity). This was to be based on the concept of using low-cost materials, working fluids and linear alternators suitable for deployment in rural areas of developing countries. The issues of concern here were the development of a suitable thermoacoustic engine topology and control measures; design of suitable heat exchanger configurations from initial use of electrical heaters to heat input through propane combustion; and characterisation of commercial loudspeakers to work as linear alternators and subsequent incorporation of selected models for engine prototyping purposes. These matters will be illustrated by a number of demonstrators and their testing in the laboratory environment. Secondly, to develop a demonstrator of a combustion driven thermoacoustic cooler for storage of vital medical supplies in remote and rural areas where there is no access to electricity grid. To this end, the paper will describe the design, construction and test results of an electrically driven demonstrator of a standing wave thermoacoustic engine coupled to a travelling wave thermoacoustic cooler. The final part of the paper will summarise the achievements to date and outline future work that has spun out from the original SCORE project. This will in particular include the current work on a scaled up version of electricity generator designed to deliver 100 W of electricity by using a two-stage engine configuration and the issues of integration of the thermoacoustic electricity generator and thermoacoustic cooler into one system.

AB - This paper is intended as a technical overview of the research and development work initially undertaken at the University of Manchester and subsequently transferred to the University of Leicester as part of the EPSRC-funded SCORE project (Stove for Cooking, Refrigeration and Electricity supply). The objectives of the work were twofold: Firstly, to develop an early demonstrator of a low-power electricity generator (to deliver approximately 10–20 W of electricity). This was to be based on the concept of using low-cost materials, working fluids and linear alternators suitable for deployment in rural areas of developing countries. The issues of concern here were the development of a suitable thermoacoustic engine topology and control measures; design of suitable heat exchanger configurations from initial use of electrical heaters to heat input through propane combustion; and characterisation of commercial loudspeakers to work as linear alternators and subsequent incorporation of selected models for engine prototyping purposes. These matters will be illustrated by a number of demonstrators and their testing in the laboratory environment. Secondly, to develop a demonstrator of a combustion driven thermoacoustic cooler for storage of vital medical supplies in remote and rural areas where there is no access to electricity grid. To this end, the paper will describe the design, construction and test results of an electrically driven demonstrator of a standing wave thermoacoustic engine coupled to a travelling wave thermoacoustic cooler. The final part of the paper will summarise the achievements to date and outline future work that has spun out from the original SCORE project. This will in particular include the current work on a scaled up version of electricity generator designed to deliver 100 W of electricity by using a two-stage engine configuration and the issues of integration of the thermoacoustic electricity generator and thermoacoustic cooler into one system.

KW - Advanced power cycles

KW - Biomass

KW - Energy conversion/recovery

KW - Engine testing

KW - Heat exchangers

KW - Heat recovery

KW - Power from waste and biomass

KW - Power generation

KW - Shell/tube heat exchanges

KW - Stirling engines

KW - Thermoacoustic refrigeration

UR - http://journals.sagepub.com/home/pia

U2 - 10.1177/0957650913493622

DO - 10.1177/0957650913493622

M3 - Article

VL - 227

SP - 762

EP - 782

JO - Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy

T2 - Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy

JF - Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy

SN - 0957-6509

IS - 7

ER -