Differential expression and induction of UDP-glucuronosyltransferase isoforms in hepatic and extrahepatic tissues of a fish, Pleuronectes platessa

Immunochemical and functional characterization

Douglas J. Clarke, Brian Burchell, Stephen G. George

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

Glucuronidation of three substrates prototypical for different UDP-glucuronosyltransferase (UDPGT) isoforms in hepatic, renal, intestinal, and branchial microsomes of corn oil, 3-methylcholanthrene, Aroclor 1254, and clofibrate-pretreated plaice was investigated. The differential expression of UDPGT in the four tissues clearly demonstrated for the first time that multiple isoforms with differing substrate specificities were present in fish. The liver was quantitatively the most important site for the glucuronidation of all three compounds studied. Phenol UDPGT activity was ubiquitous to all tissues and was induced by 3-methylcholanthrene and Aroclor 1254 in hepatic tissue and by Aroclor 1254 in renal tissue. The glucuronidation of testosterone was restricted to liver and intestinal tissue, while conjugation of bilirubin was expressed solely in hepatic tissue. The biotransformation of the endogenous compounds was not induced in the xenobiotic-treated animals. The presence of immunoreactive UDPGTs in the four tissues was demonstrated by immunoblot analysis using sheep anti-plaice UDPGT antibodies. Hepatic tissue displayed a range of immunoreactive polypeptides of 52 to 57 kDa, while a 55-kDa polypeptide was detected in extrahepatic tissues. An increased intensity of the latter polypeptide species was demonstrated in liver and kidney microsomes in which there was a concomitant induction of phenol UDPGT activity in xenobiotic-treated fish. The results indicate that the 55-kDa polypeptide was the major polyaromatic hydrocarbon-inducible UDPGT isoenzyme in hepatic and renal microsomes.

Original languageEnglish
Pages (from-to)130-136
Number of pages7
JournalToxicology and Applied Pharmacology
Volume115
Issue number1
DOIs
Publication statusPublished - 1 Jul 1992
Externally publishedYes

Fingerprint

Flounder
Glucuronosyltransferase
Fish
Protein Isoforms
Fishes
Tissue
Liver
Chlorodiphenyl (54% Chlorine)
Kidney
Peptides
Methylcholanthrene
Xenobiotics
Microsomes
Clofibrate
Corn Oil
Liver Microsomes
Substrates
Biotransformation
Hydrocarbons
Substrate Specificity

Cite this

@article{65121625df6b415a851579e5d6f57fb6,
title = "Differential expression and induction of UDP-glucuronosyltransferase isoforms in hepatic and extrahepatic tissues of a fish, Pleuronectes platessa: Immunochemical and functional characterization",
abstract = "Glucuronidation of three substrates prototypical for different UDP-glucuronosyltransferase (UDPGT) isoforms in hepatic, renal, intestinal, and branchial microsomes of corn oil, 3-methylcholanthrene, Aroclor 1254, and clofibrate-pretreated plaice was investigated. The differential expression of UDPGT in the four tissues clearly demonstrated for the first time that multiple isoforms with differing substrate specificities were present in fish. The liver was quantitatively the most important site for the glucuronidation of all three compounds studied. Phenol UDPGT activity was ubiquitous to all tissues and was induced by 3-methylcholanthrene and Aroclor 1254 in hepatic tissue and by Aroclor 1254 in renal tissue. The glucuronidation of testosterone was restricted to liver and intestinal tissue, while conjugation of bilirubin was expressed solely in hepatic tissue. The biotransformation of the endogenous compounds was not induced in the xenobiotic-treated animals. The presence of immunoreactive UDPGTs in the four tissues was demonstrated by immunoblot analysis using sheep anti-plaice UDPGT antibodies. Hepatic tissue displayed a range of immunoreactive polypeptides of 52 to 57 kDa, while a 55-kDa polypeptide was detected in extrahepatic tissues. An increased intensity of the latter polypeptide species was demonstrated in liver and kidney microsomes in which there was a concomitant induction of phenol UDPGT activity in xenobiotic-treated fish. The results indicate that the 55-kDa polypeptide was the major polyaromatic hydrocarbon-inducible UDPGT isoenzyme in hepatic and renal microsomes.",
author = "Clarke, {Douglas J.} and Brian Burchell and George, {Stephen G.}",
year = "1992",
month = "7",
day = "1",
doi = "10.1016/0041-008X(92)90376-4",
language = "English",
volume = "115",
pages = "130--136",
journal = "Toxicology and Applied Pharmacology",
issn = "0041-008X",
publisher = "Academic Press Inc.",
number = "1",

}

TY - JOUR

T1 - Differential expression and induction of UDP-glucuronosyltransferase isoforms in hepatic and extrahepatic tissues of a fish, Pleuronectes platessa

T2 - Immunochemical and functional characterization

AU - Clarke, Douglas J.

AU - Burchell, Brian

AU - George, Stephen G.

PY - 1992/7/1

Y1 - 1992/7/1

N2 - Glucuronidation of three substrates prototypical for different UDP-glucuronosyltransferase (UDPGT) isoforms in hepatic, renal, intestinal, and branchial microsomes of corn oil, 3-methylcholanthrene, Aroclor 1254, and clofibrate-pretreated plaice was investigated. The differential expression of UDPGT in the four tissues clearly demonstrated for the first time that multiple isoforms with differing substrate specificities were present in fish. The liver was quantitatively the most important site for the glucuronidation of all three compounds studied. Phenol UDPGT activity was ubiquitous to all tissues and was induced by 3-methylcholanthrene and Aroclor 1254 in hepatic tissue and by Aroclor 1254 in renal tissue. The glucuronidation of testosterone was restricted to liver and intestinal tissue, while conjugation of bilirubin was expressed solely in hepatic tissue. The biotransformation of the endogenous compounds was not induced in the xenobiotic-treated animals. The presence of immunoreactive UDPGTs in the four tissues was demonstrated by immunoblot analysis using sheep anti-plaice UDPGT antibodies. Hepatic tissue displayed a range of immunoreactive polypeptides of 52 to 57 kDa, while a 55-kDa polypeptide was detected in extrahepatic tissues. An increased intensity of the latter polypeptide species was demonstrated in liver and kidney microsomes in which there was a concomitant induction of phenol UDPGT activity in xenobiotic-treated fish. The results indicate that the 55-kDa polypeptide was the major polyaromatic hydrocarbon-inducible UDPGT isoenzyme in hepatic and renal microsomes.

AB - Glucuronidation of three substrates prototypical for different UDP-glucuronosyltransferase (UDPGT) isoforms in hepatic, renal, intestinal, and branchial microsomes of corn oil, 3-methylcholanthrene, Aroclor 1254, and clofibrate-pretreated plaice was investigated. The differential expression of UDPGT in the four tissues clearly demonstrated for the first time that multiple isoforms with differing substrate specificities were present in fish. The liver was quantitatively the most important site for the glucuronidation of all three compounds studied. Phenol UDPGT activity was ubiquitous to all tissues and was induced by 3-methylcholanthrene and Aroclor 1254 in hepatic tissue and by Aroclor 1254 in renal tissue. The glucuronidation of testosterone was restricted to liver and intestinal tissue, while conjugation of bilirubin was expressed solely in hepatic tissue. The biotransformation of the endogenous compounds was not induced in the xenobiotic-treated animals. The presence of immunoreactive UDPGTs in the four tissues was demonstrated by immunoblot analysis using sheep anti-plaice UDPGT antibodies. Hepatic tissue displayed a range of immunoreactive polypeptides of 52 to 57 kDa, while a 55-kDa polypeptide was detected in extrahepatic tissues. An increased intensity of the latter polypeptide species was demonstrated in liver and kidney microsomes in which there was a concomitant induction of phenol UDPGT activity in xenobiotic-treated fish. The results indicate that the 55-kDa polypeptide was the major polyaromatic hydrocarbon-inducible UDPGT isoenzyme in hepatic and renal microsomes.

UR - http://www.scopus.com/inward/record.url?scp=0026778572&partnerID=8YFLogxK

U2 - 10.1016/0041-008X(92)90376-4

DO - 10.1016/0041-008X(92)90376-4

M3 - Article

VL - 115

SP - 130

EP - 136

JO - Toxicology and Applied Pharmacology

JF - Toxicology and Applied Pharmacology

SN - 0041-008X

IS - 1

ER -