TY - JOUR
T1 - Discovery of stable and prognostic CT-based radiomic features independent of contrast administration and dimensionality in oesophageal cancer
AU - Piazzese, Concetta
AU - Foley, Kieran
AU - Whybra, Philip
AU - Hurt, Chris
AU - Crosby, Tom
AU - Spezi, Emiliano
PY - 2019/11/22
Y1 - 2019/11/22
N2 - The aim of this work was to investigate radiomic analysis of contrast and non-contrast enhanced planning CT images of oesophageal cancer (OC) patients in terms of stability, dimensionality and contrast agent dependency. The prognostic significance of CT-based radiomic features was also evaluated. Different 2D and 3D radiomic features were extracted from contrast and non-contrast enhanced CT images of 213 patients from the multi-centre SCOPE1 randomised controlled trial (RCT) in OC. Feature stability was evaluated by randomly dividing patients into three groups and identifying textures with similar distributions among groups with a Kruskal-Wallis analysis. A paired two-sided Wilcoxon signed rank test was used to assess for significant differences in the remaining corresponding 2D and 3D stable features. A prognostic model was constructed using clinical characteristics and remaining filtered features. The discriminative ability of significant variables was tested using Kaplan-Meier analysis. A total of 238 2D and 3D radiomic features were computed from oesophageal CT images. More than 75 features were stable if extracted from homogeneous cohort (contrast or non-contrast enhanced CT images) and inhomogeneous cohort (contrast and non-contrast enhanced CT images). Among the remaining corresponding stable features computed from both cohorts, only 4 features did not show a statistically significant difference if obtained in 2D or in 3D (p-value < 0.05). A Cox regression model constructed using 5 clinical variables (age, sex, tumour, node and metastasis (TNM) stage, WHO performance status and contrast administration) and 4 radiomic variables (inverse varianceGLCM, large distance emphasisGLDZM, zone distance non uniformity normGLDZM, zone distance varianceGLDZM), identified one radiomic feature (zone distance varianceGLDZM) that was significantly associated with overall survival (p-value = 0.032, HR = 1.25, 95% CI = 1.02–1.52). A significant difference in overall survival between groups was found when considering a threshold of zone distance varianceGLDZM equals to 1.70 (X2 = 7.692, df = 1, p-value = 0.006). Zone distance varianceGLDZM was identified as the only stable CT radiomic feature statistically correlated with overall survival, independent of dimensionality and contrast administration. This feature was able to identify high-risk patients and if validated, could be the subject of a future clinical trial aiming to improve clinical decision making and personalise OC treatment.
AB - The aim of this work was to investigate radiomic analysis of contrast and non-contrast enhanced planning CT images of oesophageal cancer (OC) patients in terms of stability, dimensionality and contrast agent dependency. The prognostic significance of CT-based radiomic features was also evaluated. Different 2D and 3D radiomic features were extracted from contrast and non-contrast enhanced CT images of 213 patients from the multi-centre SCOPE1 randomised controlled trial (RCT) in OC. Feature stability was evaluated by randomly dividing patients into three groups and identifying textures with similar distributions among groups with a Kruskal-Wallis analysis. A paired two-sided Wilcoxon signed rank test was used to assess for significant differences in the remaining corresponding 2D and 3D stable features. A prognostic model was constructed using clinical characteristics and remaining filtered features. The discriminative ability of significant variables was tested using Kaplan-Meier analysis. A total of 238 2D and 3D radiomic features were computed from oesophageal CT images. More than 75 features were stable if extracted from homogeneous cohort (contrast or non-contrast enhanced CT images) and inhomogeneous cohort (contrast and non-contrast enhanced CT images). Among the remaining corresponding stable features computed from both cohorts, only 4 features did not show a statistically significant difference if obtained in 2D or in 3D (p-value < 0.05). A Cox regression model constructed using 5 clinical variables (age, sex, tumour, node and metastasis (TNM) stage, WHO performance status and contrast administration) and 4 radiomic variables (inverse varianceGLCM, large distance emphasisGLDZM, zone distance non uniformity normGLDZM, zone distance varianceGLDZM), identified one radiomic feature (zone distance varianceGLDZM) that was significantly associated with overall survival (p-value = 0.032, HR = 1.25, 95% CI = 1.02–1.52). A significant difference in overall survival between groups was found when considering a threshold of zone distance varianceGLDZM equals to 1.70 (X2 = 7.692, df = 1, p-value = 0.006). Zone distance varianceGLDZM was identified as the only stable CT radiomic feature statistically correlated with overall survival, independent of dimensionality and contrast administration. This feature was able to identify high-risk patients and if validated, could be the subject of a future clinical trial aiming to improve clinical decision making and personalise OC treatment.
KW - Texture analysis
KW - Run length
KW - Fluorodeoxyglucose F 18
UR - http://www.scopus.com/inward/record.url?scp=85075480173&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0225550
DO - 10.1371/journal.pone.0225550
M3 - Article
C2 - 31756181
AN - SCOPUS:85075480173
VL - 14
JO - PLoS One
JF - PLoS One
SN - 1932-6203
IS - 11
M1 - e0225550
ER -