TY - JOUR
T1 - Distributed Fog Computing for Internet of Things (IoT) Based Ambient Data Processing and Analysis
AU - Ahmed, Mehreen
AU - Mumtaz, Rafia
AU - Zaidi, Syed Mohammad Hassan
AU - Hafeez, Maryam
AU - Zaidi, Syed Ali Raza
AU - Ahmad, Muneer
PY - 2020/11/1
Y1 - 2020/11/1
N2 - Urban centers across the globe are under immense environmental distress due to an increase in air pollution, industrialization, and elevated living standards. The unmanageable and mushroom growth of industries and an exponential soar in population has made the ascent of air pollution intractable. To this end, the solutions that are based on the latest technologies, such as the Internet of things (IoT) and Artificial Intelligence (AI) are becoming increasingly popular and they have capabilities to monitor the extent and scale of air contaminants and would be subsequently useful for containing them. With centralized cloud-based IoT platforms, the ubiquitous and continuous monitoring of air quality and data processing can be facilitated for the identification of air pollution hot spots. However, owing to the inherent characteristics of cloud, such as large end-to-end delay and bandwidth constraint, handling the high velocity and large volume of data that are generated by distributed IoT sensors would not be feasible in the longer run. To address these issues, fog computing is a powerful paradigm, where the data are processed and filtered near the end of the IoT nodes and it is useful for improving the quality of service (QoS) of IoT network. To further improve the QoS, a conceptual model of distributed fog computing and a machine learning based data processing and analysis model is proposed for the optimal utilization of cloud resources. The proposed model provides a classification accuracy of 99% while using a Support Vector Machines (SVM) classifier. This model is also simulated in iFogSim toolkit. It affords many advantages, such as reduced load on the central server by locally processing the data and reporting the quality of air. Additionally, it would offer the scalability of the system by integrating more air quality monitoring nodes in the IoT network.
AB - Urban centers across the globe are under immense environmental distress due to an increase in air pollution, industrialization, and elevated living standards. The unmanageable and mushroom growth of industries and an exponential soar in population has made the ascent of air pollution intractable. To this end, the solutions that are based on the latest technologies, such as the Internet of things (IoT) and Artificial Intelligence (AI) are becoming increasingly popular and they have capabilities to monitor the extent and scale of air contaminants and would be subsequently useful for containing them. With centralized cloud-based IoT platforms, the ubiquitous and continuous monitoring of air quality and data processing can be facilitated for the identification of air pollution hot spots. However, owing to the inherent characteristics of cloud, such as large end-to-end delay and bandwidth constraint, handling the high velocity and large volume of data that are generated by distributed IoT sensors would not be feasible in the longer run. To address these issues, fog computing is a powerful paradigm, where the data are processed and filtered near the end of the IoT nodes and it is useful for improving the quality of service (QoS) of IoT network. To further improve the QoS, a conceptual model of distributed fog computing and a machine learning based data processing and analysis model is proposed for the optimal utilization of cloud resources. The proposed model provides a classification accuracy of 99% while using a Support Vector Machines (SVM) classifier. This model is also simulated in iFogSim toolkit. It affords many advantages, such as reduced load on the central server by locally processing the data and reporting the quality of air. Additionally, it would offer the scalability of the system by integrating more air quality monitoring nodes in the IoT network.
KW - Air monitoring
KW - Air quality
KW - Distributed fog computing
KW - Internet of things
KW - Outlier detection
UR - http://www.scopus.com/inward/record.url?scp=85093844405&partnerID=8YFLogxK
U2 - 10.3390/electronics9111756
DO - 10.3390/electronics9111756
M3 - Article
AN - SCOPUS:85093844405
VL - 9
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
SN - 2079-9292
IS - 11
M1 - 1756
ER -