TY - JOUR
T1 - Divergent Cytochrome c Maturation System in Kinetoplastid Protists
AU - Belbelazi, Asma
AU - Neish, Rachel
AU - Carr, Martin
AU - Mottram, Jeremy C.
AU - Ginger, Michael
N1 - Funding Information:
A.B. was supported by a School of Applied Sciences Ph.D. studentship. J.C.M. is supported by the Wellcome Trust (200807/Z/16/Z).
Publisher Copyright:
© 2021 Belbelazi et al.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/5/4
Y1 - 2021/5/4
N2 - In eukaryotes, heme attachment through two thioether bonds to mitochondrial cytochromes c and c
1 is catalyzed by either multisubunit cytochrome c maturation system I or holocytochrome c synthetase (HCCS). The former was inherited from the alphaproteobacterial progenitor of mitochondria; the latter is a eukaryotic innovation for which prokaryotic ancestry is not evident. HCCS provides one of a few exemplars of de novo protein innovation in eukaryotes, but structure-function insight of HCCS is limited. Uniquely, euglenozoan protists, which include medically relevant kinetoplastids Trypanosoma and Leishmania parasites, attach heme to mitochondrial c-type cytochromes by a single thioether linkage. Yet the mechanism is unknown, as genes encoding proteins with detectable similarity to any proteins involved in cytochrome c maturation in other taxa are absent. Here, a bioinformatics search for proteins conserved in all hemoprotein-containing kinetoplastids identified kinetoplastid cytochrome c synthetase (KCCS), which we reveal as essential and mitochondrial and catalyzes heme attachment to trypanosome cytochrome c. KCCS has no sequence identity to other proteins, apart from a slight resemblance within four short motifs suggesting relatedness to HCCS. Thus, KCCS provides a novel resource for studying eukaryotic cytochrome c maturation, possibly with wider relevance, since mutations in human HCCS leads to disease. Moreover, many examples of mitochondrial biochemistry are different in euglenozoans compared to many other eukaryotes; identification of KCCS thus provides another exemplar of extreme, unusual mitochondrial biochemistry in an evolutionarily divergent group of protists. IMPORTANCE Cytochromes c are essential proteins for respiratory and photosynthetic electron transfer. They are posttranslationally modified by covalent attachment of a heme cofactor. Kinetoplastids include important tropical disease-causing parasites; many aspects of their biology differ from other organisms, including their mammalian or plant hosts. Uniquely, kinetoplastids produce cytochromes c with a type of heme attachment not seen elsewhere in nature and were the only cytochrome c-bearing taxa without evidence of protein machinery to attach heme to the apocyto-chrome. Using bioinformatics, biochemistry, and molecular genetics, we report how kinetoplastids make their cytochromes c. Unexpectedly, they use a highly diverged version of an enzyme used for heme-protein attachment in many eukaryotes. Mutations in the human enzyme lead to genetic disease. Identification of kinetoplastid cytochrome c synthetase, thus, solves an evolutionary unknown, provides a possible target for antiparasite drug development, and an unanticipated resource for studying the mechanistic basis of a human genetic disease.
AB - In eukaryotes, heme attachment through two thioether bonds to mitochondrial cytochromes c and c
1 is catalyzed by either multisubunit cytochrome c maturation system I or holocytochrome c synthetase (HCCS). The former was inherited from the alphaproteobacterial progenitor of mitochondria; the latter is a eukaryotic innovation for which prokaryotic ancestry is not evident. HCCS provides one of a few exemplars of de novo protein innovation in eukaryotes, but structure-function insight of HCCS is limited. Uniquely, euglenozoan protists, which include medically relevant kinetoplastids Trypanosoma and Leishmania parasites, attach heme to mitochondrial c-type cytochromes by a single thioether linkage. Yet the mechanism is unknown, as genes encoding proteins with detectable similarity to any proteins involved in cytochrome c maturation in other taxa are absent. Here, a bioinformatics search for proteins conserved in all hemoprotein-containing kinetoplastids identified kinetoplastid cytochrome c synthetase (KCCS), which we reveal as essential and mitochondrial and catalyzes heme attachment to trypanosome cytochrome c. KCCS has no sequence identity to other proteins, apart from a slight resemblance within four short motifs suggesting relatedness to HCCS. Thus, KCCS provides a novel resource for studying eukaryotic cytochrome c maturation, possibly with wider relevance, since mutations in human HCCS leads to disease. Moreover, many examples of mitochondrial biochemistry are different in euglenozoans compared to many other eukaryotes; identification of KCCS thus provides another exemplar of extreme, unusual mitochondrial biochemistry in an evolutionarily divergent group of protists. IMPORTANCE Cytochromes c are essential proteins for respiratory and photosynthetic electron transfer. They are posttranslationally modified by covalent attachment of a heme cofactor. Kinetoplastids include important tropical disease-causing parasites; many aspects of their biology differ from other organisms, including their mammalian or plant hosts. Uniquely, kinetoplastids produce cytochromes c with a type of heme attachment not seen elsewhere in nature and were the only cytochrome c-bearing taxa without evidence of protein machinery to attach heme to the apocyto-chrome. Using bioinformatics, biochemistry, and molecular genetics, we report how kinetoplastids make their cytochromes c. Unexpectedly, they use a highly diverged version of an enzyme used for heme-protein attachment in many eukaryotes. Mutations in the human enzyme lead to genetic disease. Identification of kinetoplastid cytochrome c synthetase, thus, solves an evolutionary unknown, provides a possible target for antiparasite drug development, and an unanticipated resource for studying the mechanistic basis of a human genetic disease.
KW - cytochrome c
KW - Leishmania
KW - mitochondrial metabolism
KW - posttranslational modification (PTM)
KW - protist
KW - Trypanosoma brucei
KW - posttranslational modification
KW - protists
KW - Protist
KW - Cytochrome c
KW - Posttranslational modification
KW - Mitochondrial metabolism
KW - Protists
KW - Posttranslational modification (PTM)
UR - http://www.scopus.com/inward/record.url?scp=85105207261&partnerID=8YFLogxK
U2 - 10.1128/mBio.00166-21
DO - 10.1128/mBio.00166-21
M3 - Article
VL - 12
JO - mBio
JF - mBio
SN - 2161-2129
IS - 3
M1 - e00166-21
ER -