Abstract
The dynamic behaviour at a rail joint is examined using a two-dimensional vehicle-track coupling model. The track system is described as a finite-length beam resting on a double-layer discrete viscous-elastic foundation. The vehicle is represented by a half car body and a single bogie. The influence of the number of layers considered, the number of elements between two sleepers, and the beam model is investigated. Parametric studies, both of the coupling model and the analytic formulae, are carried out in order to understand the influence of the main track and vehicle parameters on the P1 and P2 peak forces. Finally, the results in terms of P2 force from the proposed model are compared, not only with measured values but also with other simulated and analytical solutions. An excellent agreement between these values is found.
Original language | English |
---|---|
Pages (from-to) | 364-374 |
Number of pages | 11 |
Journal | Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit |
Volume | 229 |
Issue number | 4 |
Early online date | 12 Oct 2014 |
DOIs | |
Publication status | Published - 9 May 2015 |
Event | 11th International Conference on Vibration Problems - Instituto Superior Técnico, Lisbon, Portugal Duration: 9 Sep 2013 → 12 Sep 2013 Conference number: 11 http://wikicfp.com/cfp/servlet/event.showcfp?eventid=26838©ownerid=44509 (Link to Conference Details ) |