TY - JOUR
T1 - Eama
T2 - Efficient adaptive migration algorithm for cloud data centers (cdcs)
AU - Ibrahim, Muhammad
AU - Imran, Muhammad
AU - Jamil, Faisal
AU - Lee, Yun Jung
AU - Kim, Do Hyeun
N1 - Funding Information:
Acknowledgments: This research was supported by Energy Cloud R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (2019M3F2A1073387), and this research was supported by Institute for Information & commu- nications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2018-0-01456, AutoMaTa: Autonomous Management framework based on artificial intelligent Technology for adaptive and disposable IoT). Any correspondence related to this paper should be addressed to Do-hyeun Kim.
Funding Information:
This research was supported by Energy Cloud R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (2019M3F2A1073387), and this research was supported by Institute for Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2018-0-01456, AutoMaTa: Autonomous Management framework based on artificial intelligent Technology for adaptive and disposable IoT). Any correspondence related to this paper should be addressed to Do-hyeun Kim.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/4/15
Y1 - 2021/4/15
N2 - The rapid demand for Cloud services resulted in the establishment of large-scale Cloud Data Centers (CDCs), which ultimately consume a large amount of energy. An enormous amount of energy consumption eventually leads to high operating costs and carbon emissions. To reduce energy consumption with efficient resource utilization, various dynamic Virtual Machine (VM) consolidation approaches (i.e., Predictive Anti-Correlated Placement Algorithm (PACPA), Resource-Utilization-Aware Energy Efficient (RUAEE), Memory-bound Pre-copy Live Migration (MPLM), m Mixed migration strategy, Memory/disk operation aware Live VM Migration (MLLM), etc.) have been considered. Most of these techniques do aggressive VM consolidation that eventually results in performance degradation of CDCs in terms of resource utilization and energy consumption. In this paper, an Efficient Adaptive Migration Algorithm (EAMA) is proposed for effective migration and placement of VMs on the Physical Machines (PMs) dynamically. The proposed approach has two distinct features: first, selection of PM locations with optimum access delay where the VMs are required to be migrated, and second, reduces the number of VM migrations. Extensive simulation experiments have been conducted using the CloudSim toolkit. The results of the proposed approach are compared with the PACPA and RUAEE algorithms in terms of Service-Level Agreement (SLA) violation, resource utilization, number of hosts shut down, and energy consumption. Results show that proposed EAMA approach significantly reduces the number of migrations by 16% and 24%, SLA violation by 20% and 34%, and increases the resource utilization by 8% to 17% with increased number of hosts shut down from 10% to 13% as compared to the PACPA and RUAEE, respectively. Moreover, a 13% improvement in energy consumption has also been observed.
AB - The rapid demand for Cloud services resulted in the establishment of large-scale Cloud Data Centers (CDCs), which ultimately consume a large amount of energy. An enormous amount of energy consumption eventually leads to high operating costs and carbon emissions. To reduce energy consumption with efficient resource utilization, various dynamic Virtual Machine (VM) consolidation approaches (i.e., Predictive Anti-Correlated Placement Algorithm (PACPA), Resource-Utilization-Aware Energy Efficient (RUAEE), Memory-bound Pre-copy Live Migration (MPLM), m Mixed migration strategy, Memory/disk operation aware Live VM Migration (MLLM), etc.) have been considered. Most of these techniques do aggressive VM consolidation that eventually results in performance degradation of CDCs in terms of resource utilization and energy consumption. In this paper, an Efficient Adaptive Migration Algorithm (EAMA) is proposed for effective migration and placement of VMs on the Physical Machines (PMs) dynamically. The proposed approach has two distinct features: first, selection of PM locations with optimum access delay where the VMs are required to be migrated, and second, reduces the number of VM migrations. Extensive simulation experiments have been conducted using the CloudSim toolkit. The results of the proposed approach are compared with the PACPA and RUAEE algorithms in terms of Service-Level Agreement (SLA) violation, resource utilization, number of hosts shut down, and energy consumption. Results show that proposed EAMA approach significantly reduces the number of migrations by 16% and 24%, SLA violation by 20% and 34%, and increases the resource utilization by 8% to 17% with increased number of hosts shut down from 10% to 13% as compared to the PACPA and RUAEE, respectively. Moreover, a 13% improvement in energy consumption has also been observed.
KW - Cloud computing
KW - CloudSim
KW - Server consolidation
KW - VM migration
KW - VM placement
UR - http://www.scopus.com/inward/record.url?scp=85104906049&partnerID=8YFLogxK
U2 - 10.3390/sym13040690
DO - 10.3390/sym13040690
M3 - Article
AN - SCOPUS:85104906049
VL - 13
JO - Symmetry
JF - Symmetry
SN - 2073-8994
IS - 4
M1 - 690
ER -