Early Detection of Rolling Bearing Faults Using an Auto-Correlated Envelope Ensemble Average

Yuandong Xu, Xiaoli Tang, Fengshou Gu, Andrew Ball, James Xi Gu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Bearings have been inevitably used in broad applications of rotating machines. To increase the efficiency, reliability and safety of machines, condition monitoring of bearings is significant during the operation. However, due to the influence of high background noise and bearing component slippages, incipient faults are difficult to detect. With the continuous research on the bearing system, the modulation effects have been well known and the demodulation based on optimal frequency bands is approved as a promising method in condition monitoring. For the purpose of enhancing the performance of demodulation analysis, a robust method, ensemble average autocorrelation based stochastic subspace identification (SSI), is introduced to determine the optimal frequency bands. Furthermore, considering that both the average and autocorrelation functions can reduce noise, auto-correlated envelope ensemble average (AEEA) is proposed to suppress noise and highlight the localised fault signature. In order to examine the performance of this method, the slippage of bearing signals is modelled as a Markov process in the simulation study. Based on the analysis results of simulated bearing fault signals with white noise and slippage and an experimental signal from a planetary gearbox test bench, the proposed method is robust to determine the optimal frequency bands, suppress noise and extract the fault characteristics.
Original languageEnglish
Title of host publicationProceedings of the 23rd International Conference on Automation & Computing, (University of Huddersfield, 7-8 September 2017)
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Electronic)9780701702601
ISBN (Print)9781509050406
Publication statusPublished - 26 Oct 2017
Event23rd International Conference on Automation and Computing: Addressing Global Challenges through Automation and Computing - University of Huddersfield, Huddersfield, United Kingdom
Duration: 7 Sep 20178 Sep 2017
Conference number: 23
https://www.ieee.org/conferences_events/conferences/conferencedetails/index.html?Conf_ID=41042 (Link to Conference Website)

Conference

Conference23rd International Conference on Automation and Computing
Abbreviated titleICAC 2017
CountryUnited Kingdom
CityHuddersfield
Period7/09/178/09/17
OtherThe scope of the conference covers a broad spectrum of areas with multi-disciplinary interests in the fields of automation, control engineering, computing and information systems, ranging from fundamental research to real-world applications.
Internet address

Fingerprint Dive into the research topics of 'Early Detection of Rolling Bearing Faults Using an Auto-Correlated Envelope Ensemble Average'. Together they form a unique fingerprint.

  • Cite this

    Xu, Y., Tang, X., Gu, F., Ball, A., & Gu, J. X. (2017). Early Detection of Rolling Bearing Faults Using an Auto-Correlated Envelope Ensemble Average. In Proceedings of the 23rd International Conference on Automation & Computing, (University of Huddersfield, 7-8 September 2017) Institute of Electrical and Electronics Engineers Inc..