Effect of preparation method on the surface properties and UV imaging of indomethacin solid dispersions

Kofi Asare-Addo, Ana-Maria Totea, Nihad Mawla, Karl Walton, Sadaf Taheri, Adam Ward, Adeola Adebisi, Maen Al Shafiee, Peter Timmins, Barbara Conway

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

This work explores the use of UV imaging in solid dispersion systems. Solid dispersions are one of the common strategies used in improving the dissolution of poorly soluble drugs. Three manufacturing techniques (spray drying (SD), freeze drying (FD) and homogenising (HG)) are investigated. Differential Scanning Calorimetry (DSC) and X-Ray Powder Diffraction (XRPD) was used in characterising the solid dispersions. Advanced imaging was implemented to give an insight into how these solid dispersions performed. The DSC and XRPD results showed that all three methods and the various ratios studied produced amorphous solid dispersions. Ultra-Violet (UV) imaging of the pseudo Intrinsic Dissolution Rate (IDR) deduced only two samples to have superior pseudo IDR values to the IDR of the parent drug indomethacin (INDO). The whole dose imaging of the capsule formulation however showed all the samples (SD, FD and HG) to have superior dissolution to that of INDO which was in contrast to the IDR results. The UV images obtained from the determination of the pseudo IDR also showed a phenomenon the authors are reporting for the first time where increased polymer (Soluplus) content produced “web-like” strands that migrated to the top of the quartz cell which may have been responsible for the low pseudo IDR values. The authors also report for the first time using this UV imaging technique, the tip of a capsule coming off for drug to go into solution. The area under the curve suggested the best five samples dissolution wise to be 1:3 SD > 1:1 HG > 1:1 SD > 1:3 FD > 1:3 HG meaning a ratio of INDO to SOL in these dispersion of up to 1:3 being sufficient to produce significant dissolution increases. The developed interfacial (surface) area ratio (Sdr) highlighted how the surface area of the IDR compacts varied between the batches, in particular highlighting larger surface area gains for the FD and HG compacts. A choice of instrumentation/techniques to use in making solid dispersions may well come down to cost or instrument availability for a formulator as all three techniques were successful in improving the dissolution of indomethacin. This work thus highlights the importance of having both complimentary IDR and whole dosage imaging techniques in giving a better understanding of solid dispersion systems.
LanguageEnglish
Pages148-163
Number of pages16
JournalEuropean Journal of Pharmaceutics and Biopharmaceutics
Volume137
Early online date2 Mar 2019
DOIs
Publication statusPublished - 1 Apr 2019

Fingerprint

Freeze Drying
Surface Properties
Indomethacin
Powder Diffraction
Differential Scanning Calorimetry
X-Ray Diffraction
Capsules
Pharmaceutical Preparations
Quartz
Area Under Curve
Polymers
Costs and Cost Analysis

Cite this

@article{f5c35bf7de3e4927b5600c8e6709699b,
title = "Effect of preparation method on the surface properties and UV imaging of indomethacin solid dispersions",
abstract = "This work explores the use of UV imaging in solid dispersion systems. Solid dispersions are one of the common strategies used in improving the dissolution of poorly soluble drugs. Three manufacturing techniques (spray drying (SD), freeze drying (FD) and homogenising (HG)) are investigated. Differential Scanning Calorimetry (DSC) and X-Ray Powder Diffraction (XRPD) was used in characterising the solid dispersions. Advanced imaging was implemented to give an insight into how these solid dispersions performed. The DSC and XRPD results showed that all three methods and the various ratios studied produced amorphous solid dispersions. Ultra-Violet (UV) imaging of the pseudo Intrinsic Dissolution Rate (IDR) deduced only two samples to have superior pseudo IDR values to the IDR of the parent drug indomethacin (INDO). The whole dose imaging of the capsule formulation however showed all the samples (SD, FD and HG) to have superior dissolution to that of INDO which was in contrast to the IDR results. The UV images obtained from the determination of the pseudo IDR also showed a phenomenon the authors are reporting for the first time where increased polymer (Soluplus) content produced “web-like” strands that migrated to the top of the quartz cell which may have been responsible for the low pseudo IDR values. The authors also report for the first time using this UV imaging technique, the tip of a capsule coming off for drug to go into solution. The area under the curve suggested the best five samples dissolution wise to be 1:3 SD > 1:1 HG > 1:1 SD > 1:3 FD > 1:3 HG meaning a ratio of INDO to SOL in these dispersion of up to 1:3 being sufficient to produce significant dissolution increases. The developed interfacial (surface) area ratio (Sdr) highlighted how the surface area of the IDR compacts varied between the batches, in particular highlighting larger surface area gains for the FD and HG compacts. A choice of instrumentation/techniques to use in making solid dispersions may well come down to cost or instrument availability for a formulator as all three techniques were successful in improving the dissolution of indomethacin. This work thus highlights the importance of having both complimentary IDR and whole dosage imaging techniques in giving a better understanding of solid dispersion systems.",
author = "Kofi Asare-Addo and Ana-Maria Totea and Nihad Mawla and Karl Walton and Sadaf Taheri and Adam Ward and Adeola Adebisi and {Al Shafiee}, Maen and Peter Timmins and Barbara Conway",
year = "2019",
month = "4",
day = "1",
doi = "10.1016/j.ejpb.2019.03.002",
language = "English",
volume = "137",
pages = "148--163",
journal = "European Journal of Pharmaceutics and Biopharmaceutics",
issn = "0939-6411",
publisher = "Elsevier",

}

Effect of preparation method on the surface properties and UV imaging of indomethacin solid dispersions. / Asare-Addo, Kofi; Totea, Ana-Maria; Mawla, Nihad; Walton, Karl; Taheri, Sadaf; Ward, Adam; Adebisi, Adeola; Al Shafiee, Maen; Timmins, Peter; Conway, Barbara.

In: European Journal of Pharmaceutics and Biopharmaceutics, Vol. 137, 01.04.2019, p. 148-163.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Effect of preparation method on the surface properties and UV imaging of indomethacin solid dispersions

AU - Asare-Addo, Kofi

AU - Totea, Ana-Maria

AU - Mawla, Nihad

AU - Walton, Karl

AU - Taheri, Sadaf

AU - Ward, Adam

AU - Adebisi, Adeola

AU - Al Shafiee, Maen

AU - Timmins, Peter

AU - Conway, Barbara

PY - 2019/4/1

Y1 - 2019/4/1

N2 - This work explores the use of UV imaging in solid dispersion systems. Solid dispersions are one of the common strategies used in improving the dissolution of poorly soluble drugs. Three manufacturing techniques (spray drying (SD), freeze drying (FD) and homogenising (HG)) are investigated. Differential Scanning Calorimetry (DSC) and X-Ray Powder Diffraction (XRPD) was used in characterising the solid dispersions. Advanced imaging was implemented to give an insight into how these solid dispersions performed. The DSC and XRPD results showed that all three methods and the various ratios studied produced amorphous solid dispersions. Ultra-Violet (UV) imaging of the pseudo Intrinsic Dissolution Rate (IDR) deduced only two samples to have superior pseudo IDR values to the IDR of the parent drug indomethacin (INDO). The whole dose imaging of the capsule formulation however showed all the samples (SD, FD and HG) to have superior dissolution to that of INDO which was in contrast to the IDR results. The UV images obtained from the determination of the pseudo IDR also showed a phenomenon the authors are reporting for the first time where increased polymer (Soluplus) content produced “web-like” strands that migrated to the top of the quartz cell which may have been responsible for the low pseudo IDR values. The authors also report for the first time using this UV imaging technique, the tip of a capsule coming off for drug to go into solution. The area under the curve suggested the best five samples dissolution wise to be 1:3 SD > 1:1 HG > 1:1 SD > 1:3 FD > 1:3 HG meaning a ratio of INDO to SOL in these dispersion of up to 1:3 being sufficient to produce significant dissolution increases. The developed interfacial (surface) area ratio (Sdr) highlighted how the surface area of the IDR compacts varied between the batches, in particular highlighting larger surface area gains for the FD and HG compacts. A choice of instrumentation/techniques to use in making solid dispersions may well come down to cost or instrument availability for a formulator as all three techniques were successful in improving the dissolution of indomethacin. This work thus highlights the importance of having both complimentary IDR and whole dosage imaging techniques in giving a better understanding of solid dispersion systems.

AB - This work explores the use of UV imaging in solid dispersion systems. Solid dispersions are one of the common strategies used in improving the dissolution of poorly soluble drugs. Three manufacturing techniques (spray drying (SD), freeze drying (FD) and homogenising (HG)) are investigated. Differential Scanning Calorimetry (DSC) and X-Ray Powder Diffraction (XRPD) was used in characterising the solid dispersions. Advanced imaging was implemented to give an insight into how these solid dispersions performed. The DSC and XRPD results showed that all three methods and the various ratios studied produced amorphous solid dispersions. Ultra-Violet (UV) imaging of the pseudo Intrinsic Dissolution Rate (IDR) deduced only two samples to have superior pseudo IDR values to the IDR of the parent drug indomethacin (INDO). The whole dose imaging of the capsule formulation however showed all the samples (SD, FD and HG) to have superior dissolution to that of INDO which was in contrast to the IDR results. The UV images obtained from the determination of the pseudo IDR also showed a phenomenon the authors are reporting for the first time where increased polymer (Soluplus) content produced “web-like” strands that migrated to the top of the quartz cell which may have been responsible for the low pseudo IDR values. The authors also report for the first time using this UV imaging technique, the tip of a capsule coming off for drug to go into solution. The area under the curve suggested the best five samples dissolution wise to be 1:3 SD > 1:1 HG > 1:1 SD > 1:3 FD > 1:3 HG meaning a ratio of INDO to SOL in these dispersion of up to 1:3 being sufficient to produce significant dissolution increases. The developed interfacial (surface) area ratio (Sdr) highlighted how the surface area of the IDR compacts varied between the batches, in particular highlighting larger surface area gains for the FD and HG compacts. A choice of instrumentation/techniques to use in making solid dispersions may well come down to cost or instrument availability for a formulator as all three techniques were successful in improving the dissolution of indomethacin. This work thus highlights the importance of having both complimentary IDR and whole dosage imaging techniques in giving a better understanding of solid dispersion systems.

U2 - 10.1016/j.ejpb.2019.03.002

DO - 10.1016/j.ejpb.2019.03.002

M3 - Article

VL - 137

SP - 148

EP - 163

JO - European Journal of Pharmaceutics and Biopharmaceutics

T2 - European Journal of Pharmaceutics and Biopharmaceutics

JF - European Journal of Pharmaceutics and Biopharmaceutics

SN - 0939-6411

ER -