Efficient Computation of the Well-Founded Semantics over Big Data

Ilias Tachmazidis, Grigoris Antoniou, Wolfgang Faber

Research output: Contribution to journalConference articlepeer-review

12 Citations (Scopus)

Abstract

Data originating from the Web, sensor readings and social media result in increasingly huge datasets. The so called Big Data comes with new scientific and technological challenges while creating new opportunities, hence the increasing interest in academia and industry. Traditionally, logic programming has focused on complex knowledge structures/programs, so the question arises whether and how it can work in the face of Big Data. In this paper, we examine how the well-founded semantics can process huge amounts of data through mass parallelization. More specifically, we propose and evaluate a parallel approach using the MapReduce framework. Our experimental results indicate that our approach is scalable and that well-founded semantics can be applied to billions of facts. To the best of our knowledge, this is the first work that addresses large scale nonmonotonic reasoning without the restriction of stratification for predicates of arbitrary arity.

Original languageEnglish
Pages (from-to)445-459
Number of pages15
JournalTheory and Practice of Logic Programming
Volume14
Issue number4-5
Early online date21 Jul 2014
DOIs
Publication statusPublished - 21 Jul 2014
Event30th International Conference on Logic Programming - Vienna, Austria
Duration: 19 Jul 201422 Jul 2014
Conference number: 30

Fingerprint

Dive into the research topics of 'Efficient Computation of the Well-Founded Semantics over Big Data'. Together they form a unique fingerprint.

Cite this