Electrical motor current signal analysis using a modulation signal bispectrum for the fault diagnosis of a gearbox downstream

M. Haram, T. Wang, F. Gu, A. D. Ball

Research output: Contribution to journalConference article

3 Citations (Scopus)

Abstract

Motor current signal analysis has been an effective way for many years of monitoring electrical machines themselves. However, little work has been carried out in using this technique for monitoring their downstream equipment because of difficulties in extracting small fault components in the measured current signals. This paper investigates the characteristics of electrical current signals for monitoring the faults from a downstream gearbox using a modulation signal bispectrum (MSB), including phase effects in extracting small modulating components in a noisy measurement. An analytical study is firstly performed to understand amplitude, frequency and phase characteristics of current signals due to faults. It then explores the performance of MSB analysis in detecting weak modulating components in current signals. Experimental study based on a 10kw two stage gearbox, driven by a three phase induction motor, shows that MSB peaks at different rotational frequencies can be based to quantify the severity of gear tooth breakage and the degrees of shaft misalignment. In addition, the type and location of a fault can be recognized based on the frequency at which the change of MSB peak is the highest among different frequencies.

LanguageEnglish
Article number012050
JournalJournal of Physics: Conference Series
Volume364
Issue number1
DOIs
Publication statusPublished - 2012
Event25th International Congress on Condition Monitoring and Diagnostic Engineering: Sustained Prosperity through Proactive Monitoring, Diagnosis and Management - University of Huddersfield, Huddersfield, United Kingdom
Duration: 18 Jun 201220 Jun 2012
Conference number: 25
http://compeng.hud.ac.uk/comadem2012/ (Link to Conference Website )

Fingerprint

transmissions (machine elements)
signal analysis
modulation
gear teeth
induction motors
misalignment

Cite this

@article{564201148e884363bf2ea6aafe6bd03d,
title = "Electrical motor current signal analysis using a modulation signal bispectrum for the fault diagnosis of a gearbox downstream",
abstract = "Motor current signal analysis has been an effective way for many years of monitoring electrical machines themselves. However, little work has been carried out in using this technique for monitoring their downstream equipment because of difficulties in extracting small fault components in the measured current signals. This paper investigates the characteristics of electrical current signals for monitoring the faults from a downstream gearbox using a modulation signal bispectrum (MSB), including phase effects in extracting small modulating components in a noisy measurement. An analytical study is firstly performed to understand amplitude, frequency and phase characteristics of current signals due to faults. It then explores the performance of MSB analysis in detecting weak modulating components in current signals. Experimental study based on a 10kw two stage gearbox, driven by a three phase induction motor, shows that MSB peaks at different rotational frequencies can be based to quantify the severity of gear tooth breakage and the degrees of shaft misalignment. In addition, the type and location of a fault can be recognized based on the frequency at which the change of MSB peak is the highest among different frequencies.",
keywords = "Gearbox, Modulation signal bispectrum, Motor current signature analysis",
author = "M. Haram and T. Wang and F. Gu and Ball, {A. D.}",
year = "2012",
doi = "10.1088/1742-6596/364/1/012050",
language = "English",
volume = "364",
journal = "Journal of Physics: Conference Series",
issn = "1742-6588",
publisher = "IOP Publishing Ltd.",
number = "1",

}

TY - JOUR

T1 - Electrical motor current signal analysis using a modulation signal bispectrum for the fault diagnosis of a gearbox downstream

AU - Haram, M.

AU - Wang, T.

AU - Gu, F.

AU - Ball, A. D.

PY - 2012

Y1 - 2012

N2 - Motor current signal analysis has been an effective way for many years of monitoring electrical machines themselves. However, little work has been carried out in using this technique for monitoring their downstream equipment because of difficulties in extracting small fault components in the measured current signals. This paper investigates the characteristics of electrical current signals for monitoring the faults from a downstream gearbox using a modulation signal bispectrum (MSB), including phase effects in extracting small modulating components in a noisy measurement. An analytical study is firstly performed to understand amplitude, frequency and phase characteristics of current signals due to faults. It then explores the performance of MSB analysis in detecting weak modulating components in current signals. Experimental study based on a 10kw two stage gearbox, driven by a three phase induction motor, shows that MSB peaks at different rotational frequencies can be based to quantify the severity of gear tooth breakage and the degrees of shaft misalignment. In addition, the type and location of a fault can be recognized based on the frequency at which the change of MSB peak is the highest among different frequencies.

AB - Motor current signal analysis has been an effective way for many years of monitoring electrical machines themselves. However, little work has been carried out in using this technique for monitoring their downstream equipment because of difficulties in extracting small fault components in the measured current signals. This paper investigates the characteristics of electrical current signals for monitoring the faults from a downstream gearbox using a modulation signal bispectrum (MSB), including phase effects in extracting small modulating components in a noisy measurement. An analytical study is firstly performed to understand amplitude, frequency and phase characteristics of current signals due to faults. It then explores the performance of MSB analysis in detecting weak modulating components in current signals. Experimental study based on a 10kw two stage gearbox, driven by a three phase induction motor, shows that MSB peaks at different rotational frequencies can be based to quantify the severity of gear tooth breakage and the degrees of shaft misalignment. In addition, the type and location of a fault can be recognized based on the frequency at which the change of MSB peak is the highest among different frequencies.

KW - Gearbox

KW - Modulation signal bispectrum

KW - Motor current signature analysis

UR - http://www.scopus.com/inward/record.url?scp=84862339746&partnerID=8YFLogxK

U2 - 10.1088/1742-6596/364/1/012050

DO - 10.1088/1742-6596/364/1/012050

M3 - Conference article

VL - 364

JO - Journal of Physics: Conference Series

T2 - Journal of Physics: Conference Series

JF - Journal of Physics: Conference Series

SN - 1742-6588

IS - 1

M1 - 012050

ER -