Abstract
Solar irradiation in hot-arid climatic countries results in increased temperatures, which is one of the major factors affecting the power generation efficiency of monocrystalline photovoltaic (PV) systems, posing performance and degradation challenges. In this paper, the efficiency of a water-flow cooling system to increase the output of a monocrystalline PV module with a rated capacity of 80 W is studied from both energy and exergy perspectives. The energy and exergy tests are performed for each season of the year, with and without cooling. The energy and exergy efficiencies, as well as the commodity exergy values, are used to compare the photovoltaic device with and without cooling. The findings are based on the experimental data that were collected in Tehran, Iran as an investigated case study in a country with a hot-arid climate. The findings show that when water-flow cooling is used, the values of the three efficiency metrics change significantly. In various seasons, improvements in regular average energy efficiency vary from 7.3% to 12.4%. Furthermore, the achieved increase in exergy efficiency is in the 13.0% to 19.6% range. Using water flow cooling also results in a 12.1% to 18.4% rise in product exergy.
Original language | English |
---|---|
Article number | 6084 |
Number of pages | 12 |
Journal | Sustainability (Switzerland) |
Volume | 13 |
Issue number | 11 |
Early online date | 28 May 2021 |
DOIs | |
Publication status | Published - 1 Jun 2021 |
Externally published | Yes |