Enhancing frequency stability by integrating non-conventional power sources through multi-terminal HVDC grid

Ayman Attya, Jose Luis Dominguez-Garcia, Fernando Bianchi, Olimpo Anya-Lara

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)


The 2050 targets established by the EU will foster both larger penetration of renewable energy, especially wind power, and more cross-border interconnections. Moreover, this new framework requires the non-conventional power sources and power converter-based systems to be responsible for the duties traditionally carried out by conventional synchronous generators as frequency support. This paper presents how different power-electronic based technologies can provide frequency support individually and in a coordinated manner (with different priority given by the deadbands) ensuring a stable operation.The implemented scenarios examine challenging conditions, where the primary reserve of the interconnected conventional, renewable, and storage generation is fully utilized to tackle frequency incidents. This demonstrates how the joint regulation of the power electronic-based technologies enhances the frequency stability of the AC synchronous areas. The different control schemes and their interaction are investigated in Cigré DC grid benchmark adapted for frequency stability studies and implemented in Matlab/Simulink simulation tool. This modified grid includes 5-terminal HVDC grid with two offshore wind farms and three AC networks including battery and onshore wind farms.
Original languageEnglish
Pages (from-to)128-136
Number of pages9
JournalInternational Journal of Electrical Power and Energy Systems
Early online date14 Sep 2017
Publication statusPublished - Feb 2018
Externally publishedYes


Dive into the research topics of 'Enhancing frequency stability by integrating non-conventional power sources through multi-terminal HVDC grid'. Together they form a unique fingerprint.

Cite this