Abstract
The transport sector in Greece has the largest share in the final energy consumption and the resulting emissions are one of the main sources of atmospheric pollution. This situation is worse in the region of Attica, where nearly half of the country's private cars circulate in an area equal to 3% of the total country area; the region's climatic and geomorphological characteristics further aggravate the environmental problem. This paper examines energy saving and environmental impacts reduction from the penetration of eco-friendly technology passenger cars in this region. Three vehicle technologies are considered: (i) conventional hybrid electric vehicles, (ii) battery electric vehicles and (iii) fuel cell electric vehicles. The influence of the driving cycle is examined through the comparison of two different cycles, the New European Driving Cycle (a regulatory driving cycle) and the Athens Driving Cycle, based on actual driving data. Two alternative scenarios are formulated. The first involves the substitution of all the passenger cars that were registered during the last year (2010) with hybrid and battery electric vehicles that already exist in the Greek market. The second scenario examines the penetration of fuel cell electric vehicles. Both scenarios are evaluated on the basis of their expected energy savings and greenhouse gas emissions reduction. A 7.5% to 9% reduction of the CO 2 emissions is expected, for the Athens Driving Cycle, if these measures are applied in a five year period.
Original language | English |
---|---|
Pages (from-to) | 210-217 |
Number of pages | 8 |
Journal | Global Nest Journal |
Volume | 14 |
Issue number | 2 |
Publication status | Published - Jun 2012 |
Externally published | Yes |