Evaluating Power Loss and Performance Ratio of Hot-Spotted Photovoltaic Modules

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The impact of photovoltaic (PV) hot-spots is assessed through the analysis of 2580 polycrystalline silicon PV modules distributed across the U.K. PV hot-spots were categorized into eight different groups using the percentage of power loss. All hot-spots groups were modeled using the cumulative density function, state-of-the-art geographical mapping, and performance ratio (PR) analysis. Significantly, it was found that 92.15% of the PV modules affected by hot-spotted PV string are located in northern U.K., where the effect of low-temperature levels, heavy snow, and hoarfrost are more significant. Finally, it was found that the distribution of PV modules affected by only one hot-spotted solar cell are likely (82.41%) located in coastal locations. Hence, coastal locations expect to have lower risks for causing multiple hot-spotted solar cells in PV modules, compared to central and colder locations. The PR of all examined PV modules was analyzed. It was evident that the mean PR is significantly reduced due to the existence of hot-spots in the PV modules. The least difference in the PR between healthy and hot-spotted PV modules is equal to -0.83%, whereas the most difference is calculated at -15.47%.
LanguageEnglish
Pages5419-5427
Number of pages9
JournalIEEE Transactions on Electron Devices
Volume65
Issue number12
Early online date6 Nov 2018
DOIs
Publication statusPublished - Dec 2018

Fingerprint

Solar cells
Snow
Polysilicon
Probability density function
Temperature

Cite this

@article{10a8ad68d0ef4d3d9ff337666adf288a,
title = "Evaluating Power Loss and Performance Ratio of Hot-Spotted Photovoltaic Modules",
abstract = "The impact of photovoltaic (PV) hot-spots is assessed through the analysis of 2580 polycrystalline silicon PV modules distributed across the U.K. PV hot-spots were categorized into eight different groups using the percentage of power loss. All hot-spots groups were modeled using the cumulative density function, state-of-the-art geographical mapping, and performance ratio (PR) analysis. Significantly, it was found that 92.15{\%} of the PV modules affected by hot-spotted PV string are located in northern U.K., where the effect of low-temperature levels, heavy snow, and hoarfrost are more significant. Finally, it was found that the distribution of PV modules affected by only one hot-spotted solar cell are likely (82.41{\%}) located in coastal locations. Hence, coastal locations expect to have lower risks for causing multiple hot-spotted solar cells in PV modules, compared to central and colder locations. The PR of all examined PV modules was analyzed. It was evident that the mean PR is significantly reduced due to the existence of hot-spots in the PV modules. The least difference in the PR between healthy and hot-spotted PV modules is equal to -0.83{\%}, whereas the most difference is calculated at -15.47{\%}.",
author = "Mahmoud Dhimish and Peter Mather and Violeta Holmes",
year = "2018",
month = "12",
doi = "10.1109/TED.2018.2877806",
language = "English",
volume = "65",
pages = "5419--5427",
journal = "IEEE Transactions on Electron Devices",
issn = "0018-9383",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "12",

}

TY - JOUR

T1 - Evaluating Power Loss and Performance Ratio of Hot-Spotted Photovoltaic Modules

AU - Dhimish, Mahmoud

AU - Mather, Peter

AU - Holmes, Violeta

PY - 2018/12

Y1 - 2018/12

N2 - The impact of photovoltaic (PV) hot-spots is assessed through the analysis of 2580 polycrystalline silicon PV modules distributed across the U.K. PV hot-spots were categorized into eight different groups using the percentage of power loss. All hot-spots groups were modeled using the cumulative density function, state-of-the-art geographical mapping, and performance ratio (PR) analysis. Significantly, it was found that 92.15% of the PV modules affected by hot-spotted PV string are located in northern U.K., where the effect of low-temperature levels, heavy snow, and hoarfrost are more significant. Finally, it was found that the distribution of PV modules affected by only one hot-spotted solar cell are likely (82.41%) located in coastal locations. Hence, coastal locations expect to have lower risks for causing multiple hot-spotted solar cells in PV modules, compared to central and colder locations. The PR of all examined PV modules was analyzed. It was evident that the mean PR is significantly reduced due to the existence of hot-spots in the PV modules. The least difference in the PR between healthy and hot-spotted PV modules is equal to -0.83%, whereas the most difference is calculated at -15.47%.

AB - The impact of photovoltaic (PV) hot-spots is assessed through the analysis of 2580 polycrystalline silicon PV modules distributed across the U.K. PV hot-spots were categorized into eight different groups using the percentage of power loss. All hot-spots groups were modeled using the cumulative density function, state-of-the-art geographical mapping, and performance ratio (PR) analysis. Significantly, it was found that 92.15% of the PV modules affected by hot-spotted PV string are located in northern U.K., where the effect of low-temperature levels, heavy snow, and hoarfrost are more significant. Finally, it was found that the distribution of PV modules affected by only one hot-spotted solar cell are likely (82.41%) located in coastal locations. Hence, coastal locations expect to have lower risks for causing multiple hot-spotted solar cells in PV modules, compared to central and colder locations. The PR of all examined PV modules was analyzed. It was evident that the mean PR is significantly reduced due to the existence of hot-spots in the PV modules. The least difference in the PR between healthy and hot-spotted PV modules is equal to -0.83%, whereas the most difference is calculated at -15.47%.

UR - http://www.scopus.com/inward/record.url?scp=85056356154&partnerID=8YFLogxK

U2 - 10.1109/TED.2018.2877806

DO - 10.1109/TED.2018.2877806

M3 - Article

VL - 65

SP - 5419

EP - 5427

JO - IEEE Transactions on Electron Devices

T2 - IEEE Transactions on Electron Devices

JF - IEEE Transactions on Electron Devices

SN - 0018-9383

IS - 12

ER -