Extraction of local and global features by a convolutional neural network–long short-term memory network for diagnosing bearing faults

Zhang Chao, Wang Wei-zhi, Zhang Chen, Fan Bin, Wang Jian-guo, Fengshou Gu, Yu Xue

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Accurate and reliable fault diagnosis is one of the key and difficult issues in mechanical condition monitoring. In recent years, Convolutional Neural Network (CNN) has been widely used in mechanical condition monitoring, which is also a great breakthrough in the field of bearing fault diagnosis. However, CNN can only extract local features of signals. The model accuracy and generalization of the original vibration signals are very low in the process of vibration signal processing only by CNN. Based on the above problems, this paper improves the traditional convolution layer of CNN, and builds the learning module (local feature learning block, LFLB) of the local characteristics. At the same time, the Long Short-Term Memory (LSTM) is introduced into the network, which is used to extract the global features. This paper proposes the new neural network—improved CNN-LSTM network. The extracted deep feature is used for fault classification. The improved CNN-LSTM network is applied to the processing of the vibration signal of the faulty bearing collected by the bearing failure laboratory of Inner Mongolia University of science and technology. The results show that the accuracy of the improved CNN-LSTM network on the same batch test set is 98.75%, which is about 24% higher than that of the traditional CNN. The proposed network is applied to the bearing data collection of Western Reserve University under the condition that the network parameters remain unchanged. The experiment shows that the improved CNN-LSTM network has better generalization than the traditional CNN.

Original languageEnglish
Pages (from-to)1877-1887
Number of pages11
JournalProceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Volume236
Issue number3
Early online date3 Jun 2021
DOIs
Publication statusPublished - 1 Feb 2022

Fingerprint

Dive into the research topics of 'Extraction of local and global features by a convolutional neural network–long short-term memory network for diagnosing bearing faults'. Together they form a unique fingerprint.

Cite this