Abstract
With manufacturing shifting from traditional products to high value products, the complexity and accuracy of the products are increasing in order to reduce energy costs, create friendly environment and better health care. Structured surfaces, freeform surfaces, and other functional engineering surfaces are becoming the core part of high value manufacturing products. However, measurement of these surfaces is becoming very difficult due to instrumental limitations including measurement range, speed, resolution and accuracy. Multi-instruments/sensors measurement are now being developed for freeform and structured surface assessment, which requires the fusion of the data into a unified system to achieve larger dynamic measurements with greater reliability. This paper discusses the process of combining data from several information sources (instruments/sensors) into a common representational format and the surface topography can be reconstructed using Gaussian processes and B-spline techniques. In this paper the Gaussian process model is extended in order to take into account the uncertainty propagation and a new data fusion model based on least squares B-splines that drastically reduce the computational time are presented. The results are validated by two for freeform surface measurements.
Original language | English |
---|---|
Pages (from-to) | 570-586 |
Number of pages | 17 |
Journal | Precision Engineering |
Volume | 60 |
Early online date | 22 Aug 2019 |
DOIs | |
Publication status | Published - 1 Nov 2019 |