Abstract
Rolling bearings are important parts of mechanical equipment. However, the early failures of the bearing are usually masked by heavy noise. This brings about difficulties to the extraction of its fault features. Therefore, there is a need to develop a reliable method for early fault detection of the bearing. Considering this issue, a novel fault diagnosis method using the improved wavelet threshold denoising and fast spectral correlation (Fast-SC) is proposed. First, to solve the discontinuity of the hard threshold function and avoid the constant deviation triggered by the soft threshold function, a piecewise continuous threshold function is proposed by using a new threshold selection rule to denoise the original signal. In the new threshold function, the adjuster α is introduced to improve the traditional wavelet denoising algorithm, so as to enhance the signal-to-noise ratio (SNR) of the original signal more effectively. Then, the denoised signal is analysed by Fast-SC to identify the rolling bearing fault features. Finally, simulation analysis and experimental data demonstrate that the proposed approach is effective for rolling bearing fault detection compared with Fast-SC and the combined method based on traditional wavelet threshold and Fast-SC.
Original language | English |
---|---|
Article number | 5510879 |
Number of pages | 10 |
Journal | Shock and Vibration |
Volume | 2021 |
DOIs | |
Publication status | Published - 20 Apr 2021 |