Abstract
With the advent of intelligent manufacturing, phase measuring deflectometry (PMD) has been widely studied for the measurement of the three-dimensional (3D) shape of specular objects. However, existing PMDs cannot measure objects having discontinuous specular surfaces. This paper presents a new direct PMD (DPMD) method that measures the full-field 3D shape of complicated specular objects. A mathematical model is derived to directly relate an absolute phase map to depth data, instead of the gradient. Two relevant parameters are calibrated using a machine vision-based method. On the basis of the derived model, a full-field 3D measuring system was developed. The accuracy of the system was evaluated using a mirror with known positions along an accurate translating stage. The 3D shape of a monolithic multi-mirror array having multiple specular surfaces was measured. Experimental results show that the proposed DPMD method can obtain the full-field 3D shape of specular objects having isolated and/or discontinuous surfaces accurately and effectively.
Original language | English |
---|---|
Article number | 10293 |
Pages (from-to) | 1-8 |
Number of pages | 8 |
Journal | Scientific Reports |
Volume | 7 |
Early online date | 31 Aug 2017 |
DOIs | |
Publication status | Published - 1 Dec 2017 |
Fingerprint
Dive into the research topics of 'Full-field 3D shape measurement of discontinuous specular objects by direct phase measuring deflectometry'. Together they form a unique fingerprint.Profiles
-
Feng Gao
- Department of Engineering - Reader
- School of Computing and Engineering
- Centre for Precision Technologies - Member
Person: Academic