Abstract
While vision-based methods are renowned for their ability in full-field vibration measurements, accurately and robustly extracting subtle displacements remains a significant challenge. To address this, this paper presents a novel Optimal Phase-projection Wavelet Denoising (OPWD) method for vision-based vibration measurement that is adept at extracting characteristics of subtle displacement components. The OPWD method enhances signal quality through a structured three-step process: constructing a signal model from pixel array data, transforming this model into the frequency-space domain, and applying wavelet denoising in the spatial dimension. The method was validated through experimental comparisons on a structural beam, confirming consistency with the resonance frequencies obtained from accelerometers and mode shapes from finite element analysis. This study also contributes a comprehensive framework that lays the groundwork for future developments and implementations of additional methods in vision-based vibration measurement.
Original language | English |
---|---|
Article number | 112021 |
Number of pages | 24 |
Journal | Mechanical Systems and Signal Processing |
Volume | 224 |
Early online date | 11 Oct 2024 |
DOIs | |
Publication status | E-pub ahead of print - 11 Oct 2024 |