Fusing Landsat and MODIS Data for Vegetation Monitoring

Feng Gao, Thomas Hilker, Xiaolin Zhu, Martha Anderson, Jeffrey Masek, Peijuan Wang, Yun Yang

Research output: Contribution to specialist publicationArticle

231 Citations (Scopus)


Crop condition and natural vegetation monitoring require high resolution remote sensing imagery in both time and space - a requirement that cannot currently be satisfied by any single Earth observing sensor in isolation. The suite of available remote sensing instruments varies widely in terms of sensor characteristics, spatial resolution and acquisition frequency. For example, the Moderate-resolution Imaging Spectroradiometer (MODIS) provides daily global observations at 250m to 1km spatial resolution. While imagery from coarse resolution sensors such as MODIS are typically superior to finer resolution data in terms of their revisit frequency, they lack spatial detail to capture surface features for many applications. The Landsat satellite series provides medium spatial resolution (30m) imagery which is well suited to capturing surface details, but a long revisit cycle (16-day) has limited its use in describing daily surface changes. Data fusion approaches provide an alternative way to utilize observations from multiple sensors so that the fused results can provide higher value than can an individual sensor alone. In this paper, we review the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and two extended data fusion models (STAARCH and ESTARFM) that have been used to fuse MODIS and Landsat data. The fused MODISLandsat results inherit the spatial details of Landsat (30 m) and the temporal revisit frequency of MODIS (daily). The theoretical basis of the fusion approach is described and recent applications are presented. While these approaches can produce imagery with high spatiotemporal resolution, they still rely on the availability of actual satellite images and the quality of ingested remote sensing products. As a result, data fusion is useful for bridging gaps between medium resolution image acquisitions, but cannot replace actual satellite missions.

Original languageEnglish
Number of pages14
Specialist publicationIEEE Geoscience and Remote Sensing Magazine
Publication statusPublished - 30 Sep 2015
Externally publishedYes


Dive into the research topics of 'Fusing Landsat and MODIS Data for Vegetation Monitoring'. Together they form a unique fingerprint.

Cite this