Gear tooth stiffness reduction measurement using modal analysis and its use in wear fault severity assessment of spur gears

Isa Yesilyurt, Fengshou Gu, Andrew D. Ball

Research output: Contribution to journalArticlepeer-review

95 Citations (Scopus)

Abstract

Due to excessive service load, inappropriate operating conditions or simply end of life fatigue, damage can occur in gears. When a fault, either distributed or localised, is incurred by gears, the stiffness and consequently vibration characteristics of the damaged tooth will change. A possible non-destructive technique for damage detection and severity assessment can be derived from vibration analysis. This paper presents the use of vibration analysis in the detection, quantification, and advancement monitoring of damage incurred by spur gear teeth. The stiffness of a single spur gear tooth is analysed theoretically, and due to the difficulties in measuring the gear tooth stiffness, an experimental procedure based on the modal analysis is developed to assess the severity of the gear tooth damage. A pair of spur gears was tested under accelerated wear conditions, and conventional time and frequency domain techniques are applied to the gear vibrations to indicate the presence and progression of the wear. The developed modal stiffness assessment technique is then used to quantify the resulting wear damage to the spur gear teeth.

Original languageEnglish
Pages (from-to)357-372
Number of pages16
JournalNDT and E International
Volume36
Issue number5
Early online date11 Apr 2003
DOIs
Publication statusPublished - 1 Jul 2003
Externally publishedYes

Fingerprint

Dive into the research topics of 'Gear tooth stiffness reduction measurement using modal analysis and its use in wear fault severity assessment of spur gears'. Together they form a unique fingerprint.

Cite this